GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions are largely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, the Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI) established the LTER (Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79° N. Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting temporal trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary to common intuition, the entire ecosystem responded exceptionally fast to environmental changes in the upper water column. Major variations were associated with a Warm-Water-Anomaly evident in surface waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years of intense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether these trends indicate lasting alterations due to anthropologically-induced global environmental changes of the system, or whether they reflect natural variability on multiyear time-scales, for example, in relation to decadal oscillatory atmospheric processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-01
    Description: Deep-sea benthic communities and their structural and functional characteristics are regulated by surface water processes. Our study focused on the impact of changes in water depth and food supplies on small-sized metazoan bottom-fauna (meiobenthos) along a bathymetric transect (1200–5500 m) in the western Fram Strait. The samples were collected every summer season from 2005 to 2009 within the scope of the HAUSGARTEN monitoring program. In comparison to other polar regions, the large inflow of organic matter to the sea floor translates into relatively high meiofaunal densities in this region. Densities along the bathymetric gradient range from approximately 2400 ind. 10 cm-2 at 1200 m to approximately 300 ind. 10 cm-2 at 4000 m. Differences in meiofaunal distribution among sediment layers (i.e., vertical profile) were stronger than among stations (i.e., bathymetric gradient). At all the stations meiofaunal densities and number of taxa were the highest in the surface sediment layer (0–1 cm), and these decreased with increasing sediment depth (down to 4–5 cm). However, the shape of the decreasing pattern differed significantly among stations. Meiofaunal densities and taxonomic richness decreased gradually with increasing sediment depth at the shallower stations with higher food availability. At deeper stations, where the availability of organic matter is generally lower, meiofaunal densities decreased sharply to minor proportions at sediment depths already at 2–3 cm. Nematodes were the most abundant organisms (60–98%) in all the sediment layers. The environmental factors best correlated to the vertical patterns of the meiofaunal community were sediment-bound chloroplastic pigments that indicate phytodetrital matter. Highlights • Small-scale heterogeneity is the main source of variation in meiofauna community. • Trophic conditions influence vertical patterns of meiofauna distribution. • Meiofauna abundance and biomass decrease with increasing water depth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-24
    Description: In a bid to further understand processes that influence deep-sea epibenthic megafauna, which fulfil critical roles in the global carbon cycle, we present data from the Arctic Long-Term Ecological Research observatory HAUSGARTEN, in the Fram Strait, showing significant temporal changes in total biomass of 3 key organisms (Kolga hyalina, Elpidia heckeri and Mohnia spp.) at stations N3, HG-IV and S3 during repeated deployments over a time series spanning 2004−2015. Overall, all species investigated displayed a similar reproduction/recruitment cycle, with increasing mean mass per individual leading to decreases in abundance, and vice versa. However, there were 3 ‘events’ that deviated from this pattern. The first was a mass reproduction event of E. heckeri at HG-IV from 2012 onwards, likely due to an increased carrying capacity. The second event involved migration of K. hyalina from HG-IV between 2004−2007, with a return in 2011. This coincided with a shift in the composition of the particle flux at the station. The final event was a mass migration of K. hyalina to N3 between 2004 (0 ind. m−2) and 2007 (4.765 ± 0.084 ind. m−2). This event coincided with a 4-fold increase in phytodetrital food availability at the seafloor at N3. Our results highlight the importance of time-series studies to ascertain the key factors that influence epibenthic megafaunal communities. It also highlights the fact that more needs to be done in understanding the life history of these organisms, as this understanding is, so far, widely lacking.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-03-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Polar Biology, SPRINGER, 30, pp. 607-618, ISSN: 0722-4060
    Publication Date: 2014-09-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-06
    Description: Commercial exploitation and abrupt changes of the natural conditions may have severe impacts on the Arctic deep-sea ecosystem. The present recolonisation experiment mimicked a situation after a catastrophic disturbance (e.g. by turbidites caused by destabilized continental slopes after methane hydrate decomposition) and investigated if the recolonisation of a deep-sea habitat by meiobenthic organisms is fostered by variations innutrition and/or sediment structure. Two "Sediment Tray Free Vehicles" were deployed for one year in summer 2003 at 2500 m water depth in the Arctic deep-sea in the eastern Fram Strait. The recolonisation trays were filled with different artificial and natural sediment types (glass beads, sand, sediment mixture, pure deep-sea sediment) and were enriched with various types of food (algae, yeast, fish). After one year, meiobenthos abundances and various sediment related environmental parameters were investigated. Foraminifera were generally the most successful group: they dominated all treatments and accounted for about 87% of the total meiobenthos. Colonizing meiobenthos specimens were generally smaller compared to those in the surrounding deep-sea sediment, suggesting an active recolonisation by juveniles. Although experimental treatments with fine-grained, algaeenriched sediment showed abundances closest to natural conditions, the results suggest that food availability was the main determining factor for a successful recolonisation by meiobenthos and the structure of recolonised sediments was shown to have a subordinate influence.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 556, pp. 45-57, ISSN: 0171-8630
    Publication Date: 2017-01-31
    Description: Stones released by melting icebergs are called dropstones, and these stones constitute island-like hard-bottom habitats at high latitudes. In 2012, dropstone megafauna in the HAUSGARTEN observatory in the Fram Strait was sampled photographically. We tested the hypothesis that dropstones would have the same species distribution patterns as terrestrial islands, using 5 patterns commonly found in the classical island literature. Higher richness, diversity, and abundance of fauna occurred on larger stones and on stones near a deep-water rocky reef. These patterns can be explained by the greater surface area of larger stones, the exposure of larger stones to faster current higher in the benthic boundary layer, and increased larval supply from the rocky reef. Some pairs of morphotypes (12 pairs out of 56 morphotypes and 1540 possible pairs) co-occurred less often than expected by chance. While similar patterns have been attributed to interspecific competition in the classical island literature, we offer alternative mechanisms for dropstones. Non-random co-occurrence on dropstones may be explained by larval dispersal. Dropstone fauna had an overdispersed (clumped) distribution, so pairs of morphotypes may have negative non-random co-occurrence simply because short larval life and limited dispersal ability prevent them from having randomly overlapping distributions. In addition, we found 8 morphotype pairs that co-occurred more often than expected by chance because of epibiontism. The patterns found in dropstone communities resemble terrestrial islands, but different mechanisms may be responsible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...