GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: The 3-d coupled physical–biogeochemical model ECOHAM (version 3) was applied to the Northwest-European Shelf (47°41′–63°53′N, 15°5′W–13°55′E) for the years 1993–1996. Carbon fluxes were calculated for the years 1995 and 1996 for the inner shelf region, the North Sea (511,725 km2). This period was chosen because it corresponds to a shift from a very high winter-time North Atlantic Oscillation Index (NAOI) in 1994/1995, to an extremely low one in 1995/1996, with consequences for the North Sea physics and biogeochemistry. During the first half of 1996, the observed mean SST was about 1 °C lower than in 1995; in the southern part of the North Sea the difference was even larger (up to 3 °C). Due to a different wind regime, the normally prevailing anti-clockwise circulation, as found in winter 1995, was replaced by more complicated circulation patterns in winter 1996. Decreased precipitation over the drainage area of the continental rivers led to a reduction in the total (inorganic and organic) riverine carbon load to the North Sea from 476 Gmol C yr−1 in 1995 to 340 Gmol C yr−1 in 1996. In addition, the North Sea took up 503 Gmol C yr−1 of CO2 from the atmosphere. According to our calculations, the North Sea was a sink for atmospheric CO2, at a rate of 0.98 mol C m−2 yr−1, for both years. The North Sea is divided into two sub-systems: the shallow southern North Sea (SNS; 190,765 km2) and the deeper northern North Sea (NNS; 320,960 km2). According to our findings the SNS is a net-autotrophic system (net ecosystem production NEP〉0) but released CO2 to the atmosphere: 159 Gmol C yr−1 in 1995 and 59 Gmol C yr−1 in 1996. There, the temperature-driven release of CO2 outcompetes the biological CO2 drawdown. In the NNS, where respiratory processes prevail (NEP〈0), 662 and 562 Gmol C yr−1 were taken up from the atmosphere in 1995 and 1996, respectively. Stratification separates the productive, upper layer from the deeper layers of the water column where respiration/remineralization takes place. Duration and stability of the stratification are determined by the meteorological conditions, in relation to the NAO. Our results suggest that this mechanism controlling the nutrient supply to the upper layer in the northern and central North Sea has a larger impact on the carbon fluxes than changes in lateral transport due to NAOI variations. The North Sea as a whole imports organic carbon and exports inorganic carbon across the outer boundaries, and was found to be net-heterotrophic, more markedly in 1996 than in 1995.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-18
    Description: Two newly designed underway systems for the measurement of CO2 partial pressure (pCO2) in seawater and the atmosphere are described. Results of an intercomparison experiment carried out in the North Sea are presented. A remarkable agreement between the two simultaneously measured (pCO2) data sets was observed even though the spatial variability in surface pCO2 was high. The average difference of all l -min averages of the seawater pCO2 was as low as 0.15 μatm with a standard deviation of 1.2 μatm indicating that no systematic difference is present. A closer examination of the profiles shows that differences tend to be highest during maxima of the pCO2 gradient (up to 14 μatm/min). The time constants of both systems were estimated from laboratory experiments to 45 s, respectively, 75 s thus quantitatively underlining their capability of a fast response to pCO2 changes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • Investigations of the benthic foraminiferal distribution in the Elbe Estuary. • Low diverse assemblages are dominated by Ammonia species. • Low salinities and high-frequency dredging confines foraminiferal proliferation. • Over 40 years, changes in hydrodynamic conditions induced assemblage modifications. Abstract For the past 200 years, estuarine environments experienced intense and rapid environmental degradations due to human interventions. In addition, Global Changes are modifying the estuarine physiography, leading to a re-structuration of marginal marine benthic communities. The aim of this study is to document, the modern assemblage composition and the species-environment relations of benthic foraminifera upstream the Elbe Estuary (southern North Sea) and to observe what has changed since the first survey in 1981. For this purpose, a surface sampling was carried out from 22 stations along the transitional area of the Elbe Estuary. Living (rose-Bengal stained) and dead foraminiferal assemblages were analysed as well as hydrological and sedimentological parameters (such as salinity, pH, grain-size, and organic matter). Living faunas are characterized by very low densities and largely dominated by Ammonia species. Dead assemblages are more diverse and dominated by Ammonia aomoriensis, Haynesina germanica, and Cribroelphidium selseyense. Salinity and grain-size seem to be the major factors influencing foraminiferal distributions in the transitional area. Under the ongoing climate changes, future strategies will be taken to foster the application of benthic foraminifera as biomonitoring tool in the Elbe Estuary, via this baseline investigation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Carbon Capture and Storage (CCS) is a potential significant mitigation strategy to combat climate change and ocean acidification. The technology is well understood but its current implementation must be scaled up nearly by a hundredfold to become an effective tool that helps meet mitigation targets. Regulations require monitoring and verification at storage sites, and reliable monitoring strategies for detection and quantification of seepage of the stored carbon need to be developed. The Cseep method was developed for reliable determination of CO2 seepage signal in seawater by estimating and filtering out natural variations in dissolved inorganic carbon (C). In this work, we analysed data from the first-ever subsea CO2 release experiment performed in the north-western North Sea by the EU STEMM-CCS project. We successfully demonstrated the ability of the Cseep method to (i) predict natural C variations around the Goldeneye site over seasonal to interannual time scales; (ii) establish a process-based baseline C concentration with minimal variability; (iii) determine CO2 seepage detection threshold (DT) to reliably differentiate released- CO2 signal from natural variability and quantify released- CO2 dissolved in the sampled seawater. DT values were around 20 % of the natural C variations indicating high sensitivity of the method. Moreover, with the availability of DT value, the identification of released- CO2 required no preknowledge of seepage occurrence, but we used additional available information to assess the confidence of the results. Overall, the Cseep method features high sensitivity, automation suitability, and represents a powerful future monitoring tool both for large and confined marine areas.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mears, C., Thomas, H., Henderson, P. B., Charette, M. A., MacIntyre, H., Dehairs, F., Monnin, C., & Mucci, A. Using Ra-226 and Ra-228 isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago. Biogeosciences, 17(20), (2020): 4937-4959, doi:10.5194/bg-17-4937-2020.
    Description: As a shelf-dominated basin, the Arctic Ocean and its biogeochemistry are heavily influenced by continental and riverine sources. Radium isotopes (226Ra, 228Ra, 224Ra, and 223Ra), are transferred from the sediments to seawater, making them ideal tracers of sediment–water exchange processes and ocean mixing. As the two long-lived isotopes of the radium quartet, 226Ra and 228Ra (226Ra with a t1∕2 of 1600 years and 228Ra with a t1∕2 of 5.8 years) can provide insight into the water mass compositions, distribution patterns, as well as mixing processes and their associated timescales throughout the Canadian Arctic Archipelago (CAA). The wide range of 226Ra and 228Ra activities, as well as of the 228Ra∕226Ra, measured in water samples collected during the 2015 GEOTRACES cruise, complemented by additional chemical tracers – dissolved inorganic carbon (DIC), total alkalinity (AT), barium (Ba), and the stable oxygen isotope composition of water (δ18O) – highlight the dominant biogeochemical, hydrographic, and bathymetric features of the CAA. Bathymetric features, such as the continental shelf and shallow coastal sills, are critical in modulating circulation patterns within the CAA, including the bulk flow of Pacific waters and the inhibited eastward flow of denser Atlantic waters through the CAA. Using a principal component analysis, we unravel the dominant mechanisms and apparent water mass end-members that shape the tracer distributions. We identify two distinct water masses located above and below the upper halocline layer throughout the CAA and distinctly differentiate surface waters in the eastern and western CAA. Furthermore, we highlight water exchange across 80∘ W, inferring a draw of Atlantic water (originating from Baffin Bay) into the CAA. This underscores the presence of an Atlantic water “U-turn” located at Barrow Strait, where the same water mass is seen along the northernmost edge at 80∘ W as well as along the southeasternmost confines of Lancaster Sound. Overall, this study provides a stepping stone for future research initiatives within the Canadian Arctic Archipelago, revealing how quantifying disparities in the distributions of radioactive tracers can provide valuable information on water mass distributions, flow patterns, and mixing within vulnerable areas such as the CAA.
    Description: This research has been supported by Canadian GEOTRACES via NSERC-CCAR, the U.S. GEOTRACES via NSF Chemical Oceanography (grant no. OCE-1458305), and the DAAD, MOPGA-GRI (grant no.57429828).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...