GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • ELSEVIER SCIENCE BV  (1)
  • Wiley-Blackwell  (1)
Document type
  • Articles  (2)
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Macromolecular Theory and Simulations 7 (1998), S. 49-57 
    ISSN: 1022-1344
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Mathematical modeling and simulation were carried out to investigate the effects of the surface charge density of seed particles on secondary particle formation and the rate of polymerization in the early stage of emulsifier-free seeded emulsion polymerization of methyl methacrylate. Limited coagulation theory was applied to simulate new particle nucleation. The main factor influencing the capture rate of oligomeric radicals in a growing seed particle was assumed to be the electrostatic repulsion of seed particles. DLVO (Deryagiun-Landau-Verwey-Overbeek) theory was also introduced to estimate the electrical repulsion between seed particles and oligomeric radicals in the aqueous phase. In the case of highly charged seed particles, the adsorption rate of oligomeric radicals in the aqueous phase showed a strong effect on the polymerization rate. The low adsorption of oligomeric radicals results in a low value of the average number of radicals per particle. The surface charge density of seed particles was found to play an important role in limiting the polymerization rate at the beginning of the reaction and even in affecting the formation of secondary particles.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Although commonly reported in marine and freshwater environments, little is known about the biological sources of long chain alkyl 1,13- and 1,15-diols, and factors controlling their distributions. Here we analyzed the occurrence and distribution of these lipids in a comprehensive set of marine surface sediments and compare their distributions with environmental conditions like sea surface temperature (SST), salinity and nutrient concentrations. Fractional abundances of the C28 1,13-, C30 1,13- and C30 1,15-diols show a strong correlation with SST and based on these results, we propose the Long chain Diol Index (LDI), which expresses the C30 1,15-diol abundance relative to those of C28 1,13-, C30 1,13- and C30 1,15-diols. The LDI shows a strong linear correlation with SST (LDI = 0.033 � SST + 0.095; R2 = 0.969, n = 162) over a temperature range of �3 to 27 �C. Long chain diol distributions in sediments from the South Atlantic close to the Congo River outflow (West Africa) provided a 43 kyr LDI SST record. This record reflects several known climatic events and shows similarities with an alkenone- derived SST record obtained using the same suite of sediments, both in trend and in terms of absolute SST. This confirms the potential of the LDI as a proxy for palaeo-SST reconstruction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...