GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Czech Technical University Prague
    In:  EPIC331st EARSeL Symposium and 35th General Assembly 2011, Prague, CZ, 2011-05-30-2011-06-0231st EARSeL Symposium and 35th General Assembly 2011, Czech Technical University Prague, C25(A2484), pp. 10 p.
    Publication Date: 2019-07-16
    Description: The task of the ESA Data User Element DUE PERMAFROST project is to build-up an Earth Observation service for permafrost applications with extensive involvement of the permafrost research community. The DUE PERMAFROST remote sensing products are ‘Land Surface Temperature’ (LST), ‘Surface Soil Moisture’ (SSM), ‘Frozen/ Thawed Surface Status’ (Freeze/Thaw), ‘Terrain’, ‘Land Cover’ (LC), and ‘Surface Waters’. A major component is the evaluation of the DUE PERMAFROST products to test their scientific validity for high-latitude permafrost landscapes. There are no standard evaluation methods for this range of remote sensing products, specifically not for these latitudes. Evaluation experiments and intercomparison is done on a case-by-case basis, adding value and experience in validating products for these regions. A significant challenge in the evaluation of remote sensing products for high-latitude permafrost landscapes are the very sparse ground data. We relay on ground data provided by the Users and by international programmes. The primary international programme is the Global Terrestrial Network for Permafrost (GTN-P) initiated by the International Permafrost Association (IPA). Leading projects are the networks of the 'Circumpolar Active Layer Monitoring' (CALM) and the 'Thermal State of Permafrost' (TSP). Prime sites for testing methods and scaling are the long-term Russian-German Samoylov Station in the Lena River Delta (Arctic Siberia), and the tundra and taiga-tundra transition region in Western Siberia (RU). The results of the first evaluations of LST, SSM and Freeze/ Thaw using GTN-P and User’s data show the usability of the DUE PERMAFROST products for high-latitude permafrost landscapes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-24
    Description: Permafrost is an Essential Climate Variable (ECV) within the Global Climate Observing System (GCOS), which is characterized by subsurface temperatures and the depth of the seasonal thaw layer. Complementing ground-based monitoring networks, the Permafrost CCI project funded by the European Space Agency (ESA) 2018-2021 will establish Earth Observation (EO) based products for the permafrost ECV spanning the last two decades. Since ground temperature and thaw depth cannot be directly observed from space-borne sensors, we will ingest a variety of satellite and reanalysis data in a ground thermal model, which allows to quantitatively characterize the changing permafrost systems in Arctic and High-Mountain areas. As recently demonstrated for the Lena River Delta in Northern Siberia, the algorithm uses remotely sensed data sets of Land Surface Temperature (LST), Snow Water Equivalent (SWE) and landcover to drive the transient permafrost model CryoGrid 2, which yields ground temperature at various depths, in addition to thaw depth. For the circumpolar CCI product, we aim for a spatial resolution of 1km, and ensemble runs will be performed for each pixel to represent the subgrid variability of snow and land cover. The performance of the transient algorithm crucially depends on the correct representation of ground properties, in particular ice and organic contents. Therefore, the project will compile a new subsurface stratigraphy product which also holds great potential for improving Earth System Model results in permafrost environments. We present simulation runs for various permafrost regions and characterize the accuracy and ability to reproduce trends against ground-based data. Finally, we evaluate the feasibility of future “permafrost reanalysis” products, exploiting the information content of various satellite products to deliver the best possible estimate for the permafrost thermal state over a range of spatial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...