GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-29
    Description: Hydrothermal activity in the Central Bransfield Basin revealed an active low-temperature vent field on top of a submarine volcanic structure. A temperature anomaly was detected and the sea floor showed various patches of white silica (opal-A) precipitate exposures and some yellow–brown Fe-oxyhydroxide crusts. Enriched dissolved methane concentrations were encountered. Sediment was near 24°C just after the grab came on deck. No dense population of chemosynthetically based macrofauna known from other hydrothermal venting areas was present, except for pogonophora. The observations suggest that the sedimented hydrothermal field at Hook Ridge is a low-temperature end-member branch from a deeper hydrothermal source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-24
    Description: The scientific community is engaged in a lively debate over whether and how venting from the gas-hydrate reservoir and the Earth’s climate is connected. The various scenarios which have been proposed are based on the following assumptions: the inventory of methane gas-hydrate deposits is locally enormous, the stability of marine gas-hydrate deposits can easily be perturbed by temperature and pressure changes, enough methane can be released from these deposits to contribute adequate volumes of this isotopically distinct greenhouse gas to alter the composition of oceanic or atmospheric methane reservoirs, and the mechanisms exist for the transfer of methane from deeper geologic reservoirs to the ocean and/or atmosphere. However, some potential transfer mechanisms have been difficult to evaluate. Here, we consider the possibility of marine slumping as a mechanism to transfer methane carbon from gas hydrates within the seafloor into the ocean and atmosphere. Our analyses and field experiments indicate that large slumps could release volumetrically significant quantities of solid gas hydrates which would float upwards in the water column. Large pieces of gas hydrate would reach the upper layers of the ocean before decomposing, and some of the methane would be directly injected into the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 103 (7). pp. 1801-1815.
    Publication Date: 2019-09-23
    Description: Methane (CH4) concentrations and CH4 stable carbon isotopic composition (d13CCH4 ) were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500 nmol L-1. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by d13CCH4 values between -50 and -62 % Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6 years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-23
    Description: Es werden mögliche Beiträge geologischer und mariner Kohlenstoffspeicher für die Vermeidung von CO2-Emissionen in die Atmosphäre oder für die Entnahme von bereits emittiertem CO2 aus der Atmosphäre vorgestellt. Neben der Einlagerung von CO2 in geologischen Speichern unter Land und unter dem Meeresboden werden eine forcierte CO2-Entnahme aus der Atmosphäre und Abgabe in den Ozean durch Erhöhung der Alkalinität, durch Ozeandüngung und durch das Management vegetationsreicher Küstenökosysteme untersucht. Alle Optionen können sowohl global als auch aus deutscher Perspektive eine Rolle für das Erreichen der Klimaziele spielen. Umweltverträglichkeit, Permanenz der Speicherung sowie infrastrukturelle und rechtliche Voraussetzungen, gesellschaftliche Akzeptanz und wirtschaftliche Realisierbarkeit bedürfen für alle Ansätze weiterer Klärung, bevor hieraus realisierbare Optionen werden können.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...