GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications on behalf of the European Geosciences Union  (4)
  • Public Library of Science  (2)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 29-39, doi:10.5194/bg-9-29-2012.
    Description: The effects of nutrients and pCO2 on zooxanthellate and azooxanthellate colonies of the temperate scleractinian coral Astrangia poculata (Ellis and Solander, 1786) were investigated at two different temperatures (16 °C and 24 °C). Corals exposed to elevated pCO2 tended to have lower relative calcification rates, as estimated from changes in buoyant weights. Experimental nutrient enrichments had no significant effect nor did there appear to be any interaction between pCO2 and nutrients. Elevated pCO2 appeared to have a similar effect on coral calcification whether zooxanthellae were present or absent at 16 °C. However, at 24 °C, the interpretation of the results is complicated by a significant interaction between gender and pCO2 for spawning corals. At 16 °C, gamete release was not observed, and no gender differences in calcification rates were observed – female and male corals showed similar reductions in calcification rates in response to elevated CO2 (15% and 19% respectively). Corals grown at 24 °C spawned repeatedly and male and female corals exhibited two different growth rate patterns – female corals grown at 24 °C and exposed to CO2 had calcification rates 39% lower than females grown at ambient CO2, while males showed a non-significant decline of 5% under elevated CO2. The increased sensitivity of females to elevated pCO2 may reflect a greater investment of energy in reproduction (egg production) relative to males (sperm production). These results suggest that both gender and spawning are important factors in determining the sensitivity of corals to ocean acidification, and considering these factors in future research may be critical to predicting how the population structures of marine calcifiers will change in response to ocean acidification.
    Description: This material is based upon work supported under a National Science Foundation Graduate Research Fellowship, the WHOI Ocean Life Institute, NSF OCE-1041106, and an International Society for Reef Studies/Ocean Conservancy Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/csv
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e61065, doi:10.1371/journal.pone.0061065.
    Description: Ocean acidification, characterized by elevated pCO2 and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO2 exposure (resulting in pH = 7.39, Ωar = 0.74) on the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a switch from high CO2 to ambient CO2 conditions (pH = 7.93, Ωar = 2.26) after 3 d, to assess the possibility of persistent effects of early exposure. The survival of larvae in the high CO2 treatment was consistently lower than the survival of larvae in ambient conditions, and was already significantly lower at 1 d. Likewise, the shell length of larvae in the high CO2 treatment was significantly smaller than larvae in the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5%. This study also demonstrates that the size effects of short-term exposure to high CO2 are still detectable after 7 d of larval development; the shells of larvae exposed to high CO2 for the first 3 d of development and subsequently exposed to ambient CO2 were not significantly different in size at 3 and 7 d than the shells of larvae exposed to high CO2 throughout the experiment.
    Description: This work was funded by a Woods Hole Oceanographic Institution Interdisciplinary Award to Mullineaux & McCorkle; and awards to Mullineaux & White, to McCorkle, and to Cohen & McCorkle through NOAA (National Oceanic and Admosphereic Administration) Sea Grant #NA10OAR4170083. White was funded through a National Defense Science and Engineering Graduate Fellowship through the American Society for Engineering Education.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e63714, doi:10.1371/journal.pone.0063714.
    Description: Anthropogenic carbon dioxide (CO2) is being absorbed into the ocean, altering seawater chemistry, with potentially negative impacts on a wide range of marine organisms. The early life stages of invertebrates with internal and external aragonite structures may be particularly vulnerable to this ocean acidification. Impacts to cephalopods, which form aragonite cuttlebones and statoliths, are of concern because of the central role they play in many ocean ecosystems and because of their importance to global fisheries. Atlantic longfin squid (Doryteuthis pealeii), an ecologically and economically valuable taxon, were reared from eggs to hatchlings (paralarvae) under ambient and elevated CO2 concentrations in replicated experimental trials. Animals raised under elevated pCO2 demonstrated significant developmental changes including increased time to hatching and shorter mantle lengths, although differences were small. Aragonite statoliths, critical for balance and detecting movement, had significantly reduced surface area and were abnormally shaped with increased porosity and altered crystal structure in elevated pCO2-reared paralarvae. These developmental and physiological effects could alter squid paralarvae behavior and survival in the wild, directly and indirectly impacting marine food webs and commercial fisheries.
    Description: This study was supported by a WHOI Student Summer Fellowship and WHOI-MIT Joint Program, the Penzance Endowed Fund, the John E. and Anne W. Sawyer Endowed Fund and NSF Research Grant No. EF-1220034. Additional support came from NSF OCE 1041106 to ALC and DCM, and NOAA Sea Grant award #NA10OAR4170083 to ALC and DCM.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 1335-1347, doi:10.5194/bg-7-1335-2010
    Description: Benthic foraminifera were cultured for five months at four temperatures (4, 7, 14 and 21 °C) to establish the temperature dependence of foraminiferal calcite δ18O and Mg/Ca. Two Bulimina species (B. aculeata and B. marginata) were most successful in terms of calcification, adding chambers at all four temperatures and reproducing at 7 and 14 °C. Foraminiferal δ18O values displayed ontogenetic variations, with lower values in younger individuals. The δ18O values of adult specimens decreased with increasing temperature in all but the 4 °C treatment, exhibiting a relationship consistent with previous δ18O paleotemperature calibration studies. Foraminiferal Mg/Ca values, determined by laser ablation inductively coupled plasma mass spectrometry, were broadly consistent with previous Mg/Ca calibration studies, but extremely high values in the 4 °C treatment and higher than predicted values at two of the other three temperatures make it challenging to interpret these results.
    Description: Funding was provided by US NSF OCE-0647899 to DCM and JMB, and by the Swedish Research Council (grant no 621-2005-4265), the Lamm Foundation, and the Engkvist Foundation to HLF. A Fulbright fellowship to HLF together with traveling grants from G¨oteborg University, the Crafoord Foundation, and the Royal Physiographic Society in Lund enabled HLF’s Postdoc stay and subsequent visits to WHOI.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 8 (2011): 1521, doi:10.5194/bg-8-1521-2011.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 253-265, doi:10.5194/bg-13-253-2016.
    Description: Degradation of coastal ecosystems by eutrophication is largely defined by nitrogen loading from land via surface water and groundwater flows. However, indicators of water quality are highly variable due to a myriad of other drivers, including temperature and precipitation. To evaluate these drivers, we examined spatial and temporal trends in a 22-year record of summer water quality data from 122 stations in 17 embayments within Buzzards Bay, MA (USA), collected through a citizen science monitoring program managed by Buzzards Bay Coalition. To identify spatial patterns across Buzzards Bay's embayments, we used a principle component and factor analysis and found that rotated factor loadings indicated little correlation between inorganic nutrients and organic matter or chlorophyll a (Chl a) concentration. Factor scores showed that embayment geomorphology in addition to nutrient loading was a strong driver of water quality, where embayments with surface water inputs showed larger biological impacts than embayments dominated by groundwater influx. A linear regression analysis of annual summertime water quality indicators over time revealed that from 1992 to 2013, most embayments (15 of 17) exhibited an increase in temperature (mean rate of 0.082 ± 0.025 (SD) °C yr−1) and Chl a (mean rate of 0.0171 ± 0.0088 log10 (Chl a; mg m−3) yr−1, equivalent to a 4.0 % increase per year). However, only seven embayments exhibited an increase in total nitrogen (TN) concentration (mean rate 0.32 ± 0.47 (SD) µM yr−1). Average summertime log10(TN) and log10(Chl a) were correlated with an indication that the yield of Chl a per unit total nitrogen increased with time suggesting the estuarine response to TN may have changed because of other stressors such as warming, altered precipitation patterns, or changing light levels. These findings affirm that nitrogen loading and physical aspects of embayments are essential in explaining the observed ecosystem response. However, climate-related stressors may also need to be considered by managers because increased temperature and precipitation may worsen water quality and partially offset benefits achieved by reducing nitrogen loading.
    Description: Support for this analysis was provided by the Woods Hole Partnership in Education Program, the Department of Interior Northeast Climate Science Center, and the John D. and Catherine T. MacArthur Foundation (Grant no. 14-106159-000- CFP).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...