GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-28
    Description: Microbial aerobic methane oxidation (MOx) is intrinsically coupled to the production of carbon dioxide, favoring carbonate dissolution. Recently, microbial organic polymers were shown to be able to induce carbonate dissolution. To discriminate between different mechanisms causing calcite dissolution, experiments were conducted in the presence of solid calcite with (1) actively growing cells (2) starving cells, and (4) dead cells of the methanotrophic bacterium Methylosinus trichosporium under brackish conditions (salinity 10) near calcite saturation (saturation state (Ω) 1.76 to 2.22). Total alkalinity and the amount of dissolved calcium markedly increased in all experiments containing M. trichosporium cells. After initial system equilibration, similar calcite dissolution rates, ranging between 14.9 (dead cells) and 29.6 μmol l−1 d−1 (actively growing cells), were observed. While concentrations of transparent exopolymer particles declined with time in the presence of actively growing and starving cells, they increased in experiments with dead cells. Scanning electron microscopy images of calcite crystals revealed visible surface corrosion after exposure to live and dead M. trichosporium cells. The results of this study indicate a strong potential for microbial MOx to affect calcite stability negatively, facilitating calcite dissolution. In addition to CO2 production by methanotrophically active cells, we suggest that the release of acidic or Ca2+-chelating organic carbon compounds from dead cells could also enhance calcite dissolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Subduction of the oceanic Cocos plate offshore Costa Rica causes strong advection of methane-charged fluids. Presented here are the first direct measurements of microbial anaerobic oxidation of methane (AOM) and sulfate reduction (SR) rates in sediments from the two mounds, applying radiotracer techniques in combination with numerical modeling. In addition, analysis of carbonate δ18O, δ13C, and 87Sr / 86Sr signatures constrain the origin of the carbonate-precipitating fluid. Average rates of microbial activities showed differences with a factor of 4.8 to 6.3 between Mound 11 [AOM 140.71 (±40.84 SD); SR 117.25 (±82.06 SD) mmol m−2 d−1, respectively] and Mound 12 [AOM 22.37 (±0.85 SD); SR 23.99 (±5.79 SD) mmol m−2 d−1, respectively]. Modeling results yielded flow velocities of 50 cm a−1 at Mound 11 and 8–15 cm a−1 at Mound 12. Analysis of oxygen and carbon isotope variations of authigenic carbonates from the two locations revealed higher values for Mound 11 (δ18O: 4.7 to 5.9‰, δ13C: −21.0 to −29.6‰), compared to Mound 12 (δ18O: 4.1 to 4.5‰, δ13C: −45.7 to −48.9‰). Analysis of carbonates 87Sr / 86Sr indicated temporal changes of deep-source fluid admixture at Mound 12. The present study is in accordance with previous work supporting considerable differences of methane flux between the two Mounds. It also strengthens the hypothesis of a predominantly deep fluid source for Mound 11 versus a rather shallow source of biogenic methane for Mound 12. The results demonstrate that methane-driven microbial activity is a valid ground truthing tool for geophysical measurements of fluid advection and constraining of recent methane fluxes in the study area. The study further shows that the combination of microbial rate measurements, numerical modeling, and authigenic carbonate analysis provide a suitable approach to constrain temporal and spatial variations of methane charged fluid flow at the Pacific Costa Rican margin.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150–170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Microbial metabolisms in sediments play a pivotal role in marine element cycling. In hydrothermal sediments chemosynthetic microorganisms likely prevail, while in non-hydrothermally impacted sediment regimes microorganisms associated with organic matter decomposition are primarily recognized. To test how these microorganisms are distributed along the hitherto neglected transition zone influenced to different degrees by hydrothermal input we sampled four sediment sites: these were (i) near an active vent, (ii) the outer rim, and (iii) the inactive area of the Kairei hydrothermal field as well as (iv) sediments roughly 200 km south-east of the Kairei field. Chemistry and microbial community compositions were different at all sampling sites. Against expectations, the sediments near the active vent did not host typical chemosynthetic microorganisms and chemistry did not indicate current, extensive hydrothermal venting. Data from the outer rim area of the active Kairei field suggested microbially mediated saponite production and diffuse hydrothermal flow from below accompanied by increased metal concentrations. A steep redox gradient in the inactive Kairei field points towards significant redox driven processes resulting in dissolution of hydrothermal precipitates and intense metal mobilization. Local microorganisms were primarily Chloroflexi, Bacillales, Thermoplasmata, and Thaumarchaeota.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...