GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Methane and nitrous oxide are important greenhouse gases which show a strong increase in atmospheric mixing ratios since pre-industrial time as well as large variations during past climate changes. The understanding of their biogeochemical cycles can be improved using stable isotope analysis. However, high-precision isotope measurements on air trapped in ice cores are challenging because of the high susceptibility to contamination and fractionation. Here, we present a dry extraction system for combined CH4 and N2O stable isotope analysis from ice core air, using an ice grating device. The system allows simultaneous analysis of δD(CH4) or δ13C(CH4), together with δ15N(N2O), δ18O(N2O) and δ15N(NO+ fragment) on a single ice core sample, using two isotope mass spectrometry systems. The optimum quantity of ice for analysis is about 600 g with typical "Holocene" mixing ratios for CH4 and N2O. In this case, the reproducibility (1σ ) is 2.1‰ for δD(CH4), 0.18‰ for δ13C(CH4), 0.51‰ for δ15N(N2O), 0.69‰ for δ18O(N2O) and 1.12‰ for δ15N(NO+ fragment). For smaller amounts of ice the standard deviation increases, particularly for N2O isotopologues. For both gases, small-scale intercalibrations using air and/or ice samples have been carried out in collaboration with other institutes that are currently involved in isotope measurements of ice core air. Significant differences are shown between the calibration scales, but those offsets are consistent and can therefore be corrected for.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-14
    Description: Stable water isotopes from polar ice cores are invaluable high-resolution climate proxy records. Recent studies have aimed to improve our understanding of how the climate signal is stored in the stable water isotope record by addressing the influence of post-depositional processes on the isotopic composition of surface snow. In this study, the relationship between surface snow metamorphism and water isotopes during precipitation-free periods is explored using measurements of snow-specific surface area (SSA). Continuous daily SSA measurements from the East Greenland Ice Core Project site (EastGRIP) during the summer seasons of 2017, 2018 and 2019 are used to develop an empirical decay model to describe events of rapid decrease in SSA linked to snow metamorphism. We find that SSA decay during precipitation-free periods at the EastGRIP site is best described by the exponential equation SSA(t)Combining double low line(SSA0-22).e-αt+22, and has a dependency on wind speed. The relationship between surface snow SSA and snow isotopic composition is primarily explored using empirical orthogonal function analysis. A coherence between SSA and deuterium excess is apparent during 2017 and 2019, suggesting that processes driving change in SSA also influence snow deuterium excess. By contrast, 2018 was characterised by a covariance between SSA and 18O highlighting the inter-Annual variability in surface regimes. Moreover, we observed changes in isotopic composition consistent with fractionation effects associated with sublimation and vapour diffusion during periods of rapid decrease in SSA. Our findings support recent studies which provide evidence of isotopic fractionation during sublimation, and show that snow deuterium excess is modified during snow metamorphism.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...