GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Inter-Research  (2)
  • Copernicus Publications  (1)
  • 1
    facet.materialart.
    Unknown
    Inter-Research
    In:  EPIC3Marine Ecology Progress Series, Inter-Research, 632, pp. 27-42, ISSN: 0171-8630
    Publication Date: 2020-01-10
    Description: This study shows that macrofaunal irrigation traits constitute a valuable complement to sediment reworking traits in estimating macrofaunal impact on nutrient fluxes across the sediment-water interface. We correlated density, biomass, community bioturbation potential (BPc, an index based on reworking traits, body mass and density) and community irrigation potential (IPc, an index based on irrigation traits, body mass and density) with nitrite, nitrate, ammonium, silicate and phosphate flux data under different environmental conditions. Generalized linear models performed best with a combination of environmental conditions and irrigation trait-based indices. This was not only a direct effect of the irrigation traits, but also of the scaling factor 0.75 employed in IPc to infer metabolic activity from body mass. Accordingly, predictive models of nutrient flux across the sediment-water interface will profit greatly from incorporating macrofaunal irrigation behaviour by means of trait-based indices.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Description: We compared primary production and respiration of temperate (Helgoland, North Sea) and subtidal Arctic (Kongsfjorden, Svalbard) microphytobenthic communities during summer. The diatom communities were generally characterized as cosmopolitan, displayed no site specificity, and had similar chl a and fucoxanthin concentrations. Their net and gross photosynthesis rates and light adaptation intensities, derived from laboratory microsensor measurements, were also similar, despite differences in water temperature. Daily oxygen fluxes across the sediment− water interface were estimated by combining laboratory microprofile and planar optode measurements with in situ data on oxygen penetration and light dynamics. During the study period, the Svalbard sediments were on average net heterotrophic,while the Helgoland sediments were net autotrophic (−22.4 vs. 9.2 mmol O2 m−2 d−1). This was due to high infaunal abundance in the Svalbard sediments that caused high oxygen uptake rates in the sediments and consumption below the sediment euphotic zone. Additionally, bioirrigation of the sediment due to infaunal burrow ventilation was reduced by light; thus, the sedimentary oxygen inventory was reduced with increasing light. Conversely, light-enhanced the oxygen inventory in the Helgoland sediments. Oxygen dynamics in the Svalbard sediments were therefore dominated by bioirrigation, whereas in the Helgoland sediments they were dominated by photosynthetic oxygen production.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Science Data, Copernicus Publications, 16(3), pp. 1177-1184, ISSN: 1866-3508
    Publication Date: 2024-03-27
    Description: Profound environmental changes, such as drastic sea-ice decline, leave large-scale ecological footprints on the distribution and composition of marine biota in the Arctic. Currently, the impact of such stressors is not sufficiently understood due to the lack of pan-Arctic data that allow for estimating ecological baselines as well as modelling current and forecast potential changes in benthic biodiversity and ecosystem functioning. Here, we introduce the PAN-Arctic data collection of benthic BIOtas (PANABIO) and discuss its timeliness, potential, and details of its further development. The data collection contains individual datasets with records (presence, counts, abundance, or biomass) of benthic fauna, usually at genus level or species level, which were identified in field samples obtained at point-referenced locations (stations) by means of grabs, towed gear, or seabed imaging. The data cover the entire pan-Arctic realm, i.e.The central Arctic Ocean, Chukchi Sea, East Siberian Sea, Laptev Sea, Kara Sea, Barents Sea (including the White Sea), Svalbard waters, Greenland Sea, Norwegian Sea, Canadian Archipelago, Beaufort Sea, and Bering Sea as well as some adjacent sub-Arctic regions (Sea of Japan, Gulf of Okhotsk). Currently (as of 14 December 2023), PANABIO includes 27 datasets with a total of 126ĝ€¯388 records of 2978 taxa collected from 11ĝ€¯555 samples taken at 10ĝ€¯596 stations during 1095 cruises between 1800 and 2014. These numbers will increase with more data becoming available over time through contributions from PANABIO users. The data collection is available in a PostgreSQL-based data warehouse that can be accessed and queried through an open-Access front-end web service at https://critterbase.awi.de/panabio (last access: 27 February 2024). A snapshot of the current data collection and its 27 individual datasets is also available from the data publisher PANGAEA (10.1594/PANGAEA.963640, Piepenburg et al., 2023).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...