GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Climate of the Past, Copernicus GmbH, Vol. 12, No. 8 ( 2016-08-22), p. 1693-1719
    Abstract: Abstract. Past climate is an important benchmark to assess the ability of climate models to simulate key processes and feedbacks. Numerous proxy records exist for stable isotopes of water and/or carbon, which are also implemented inside the components of a growing number of Earth system model. Model–data comparisons can help to constrain the uncertainties associated with transfer functions. This motivates the need of producing a comprehensive compilation of different proxy sources. We have put together a global database of proxy records of oxygen (δ18O), hydrogen (δD) and carbon (δ13C) stable isotopes from different archives: ocean and lake sediments, corals, ice cores, speleothems and tree-ring cellulose. Source records were obtained from the georeferenced open access PANGAEA and NOAA libraries, complemented by additional data obtained from a literature survey. About 3000 source records were screened for chronological information and temporal resolution of proxy records. Altogether, this database consists of hundreds of dated δ18O, δ13C and δD records in a standardized simple text format, complemented with a metadata Excel catalog. A quality control flag was implemented to describe age markers and inform on chronological uncertainty. This compilation effort highlights the need to homogenize and structure the format of datasets and chronological information as well as enhance the distribution of published datasets that are currently highly fragmented and scattered. We also provide an online portal based on the records included in this database with an intuitive and interactive platform (http://climateproxiesfinder.ipsl.fr/), allowing one to easily select, visualize and download subsets of the homogeneously formatted records that constitute this database, following a choice of search criteria, and to upload new datasets. In the last part, we illustrate the type of application allowed by our database by comparing several key periods highly investigated by the paleoclimate community. For coherency with the Paleoclimate Modelling Intercomparison Project (PMIP), we focus on records spanning the past 200 years, the mid-Holocene (MH, 5.5–6.5 ka; calendar kiloyears before 1950), the Last Glacial Maximum (LGM, 19–23 ka), and those spanning the last interglacial period (LIG, 115–130 ka). Basic statistics have been applied to characterize anomalies between these different periods. Most changes from the MH to present day and from LIG to MH appear statistically insignificant. Significant global differences are reported from LGM to MH with regional discrepancies in signals from different archives and complex patterns.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Climate of the Past, Copernicus GmbH, Vol. 12, No. 5 ( 2016-05-03), p. 1101-1117
    Abstract: Abstract. The reconstruction of droughts is essential for the understanding of past drought dynamics and can help evaluate future drought scenarios in a changing climate. This article presents a reconstruction of summer droughts in France based on annually resolved, absolutely dated chronologies of oxygen isotope ratios (δ18O) in tree ring cellulose from Quercus spp. Samples were taken from living trees and timber wood from historic buildings at two sites: Fontainebleau (48°23′ N, 2°40′ E; 1326–2000 CE) and Angoulême (45°44′ N, 0°18′ E; 1360–2004 CE). Cellulose δ18O from these sites proved to be a good proxy of summer climate, as the trees were sensitive to temperature and moisture availability. However, offsets in average δ18O values between tree cohorts necessitated a correction before joining them to the final chronologies. Using the corrected δ18O chronologies, we developed models based on linear regression to reconstruct drought, expressed by the standardized precipitation evapotranspiration index (SPEI). The significant correlations between the SPEI and cellulose δ18O (r ≈ −0.70), as well as the verification of the models by independent data support the validity of these reconstructions. At both sites, recent decades are characterized by increasing drought. Fontainebleau displays dominantly wetter conditions during earlier centuries, whereas the current drought intensity is not unprecedented in the Angoulême record. While the δ18O chronologies at the two studied sites are highly correlated during the 19th and 20th centuries, there is a significant decrease in the correlation coefficient between 1600 and 1800 CE, which indicates either a weaker climate sensitivity of the tree ring proxies during this period, or a more heterogeneous climate in the north and the south of France. Future studies of tree ring isotope networks might reveal if the seasonality and spatial patterns of past droughts can explain this decoupling. A regional drought reconstruction based on a combination of the two sites shows good agreement with historical records of grape harvest dates in France, which provide another proxy of summer climate.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Cryosphere, Copernicus GmbH, Vol. 10, No. 4 ( 2016-07-29), p. 1647-1663
    Abstract: Abstract. Quantifying the magnitude of post-depositional processes affecting the isotopic composition of surface snow is essential for a more accurate interpretation of ice core data. To achieve this, high temporal resolution measurements of both lower atmospheric water vapor and surface snow isotopic composition are required. This study presents continuous measurements of water vapor isotopes performed in East Antarctica (Kohnen station) from December 2013 to January 2014 using a laser spectrometer. Observations have been compared with the outputs of two atmospheric general circulation models (AGCMs) equipped with water vapor isotopes: ECHAM5-wiso and LMDZ5Aiso. During our monitoring period, the signals in the 2 m air temperature T, humidity mixing ratio q and both water vapor isotopes δD and δ18O are dominated by the presence of diurnal cycles. Both AGCMs simulate similar diurnal cycles with a mean amplitude 30 to 70 % lower than observed, possibly due to an incorrect simulation of the surface energy balance and the boundary layer dynamics. In parallel, snow surface samples were collected each hour over 35 h, with a sampling depth of 2–5 mm. A diurnal cycle in the isotopic composition of the snow surface is observed in phase with the water vapor, reaching a peak-to-peak amplitude of 3 ‰ for δD over 24 h (compared to 36 ‰ for δD in the water vapor). A simple box model treated as a closed system has been developed to study the exchange of water molecules between an air and a snow reservoir. In the vapor, the box model simulations show too much isotopic depletion compared to the observations. Mixing with other sources (advection, free troposphere) has to be included in order to fit the observations. At the snow surface, the simulated isotopic values are close to the observations with a snow reservoir of  ∼ 5 mm depth (range of the snow sample depth). Our analysis suggests that fractionation occurs during sublimation and that vapor–snow exchanges can no longer be considered insignificant for the isotopic composition of near-surface snow in polar regions.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Cryosphere, Copernicus GmbH, Vol. 11, No. 1 ( 2017-02-01), p. 343-362
    Abstract: Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Cryosphere, Copernicus GmbH, Vol. 11, No. 5 ( 2017-10-20), p. 2345-2361
    Abstract: Abstract. The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome Fuji with a shorter data set using the same methods.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Cryosphere, Copernicus GmbH, Vol. 11, No. 6 ( 2017-11-02), p. 2427-2437
    Abstract: Abstract. Ice sheets provide exceptional archives of past changes in polar climate, regional environment and global atmospheric composition. The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ∼ 800 000 years. Obtaining an older paleoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we use internal isochrones, identified from airborne radar coupled to ice-flow modelling to estimate the age of basal ice along transects in the Dome C area. Three glaciological properties are inferred from isochrones: surface accumulation rate, geothermal flux and the exponent of the Lliboutry velocity profile. We find that old ice (〉 1.5 Myr, 1.5 million years) likely exists in two regions: one ∼ 40 km south-west of Dome C along the ice divide to Vostok, close to a secondary dome that we name Little Dome C (LDC), and a second region named North Patch (NP) located 10–30 km north-east of Dome C, in a region where the geothermal flux is apparently relatively low. Our work demonstrates the value of combining radar observations with ice flow modelling to accurately represent the true nature of ice flow, and understand the formation of ice-sheet architecture, in the centre of large ice sheets.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Climate of the Past, Copernicus GmbH, Vol. 13, No. 5 ( 2017-05-12), p. 473-489
    Abstract: Abstract. A 181.8 m ice core was recovered from a borehole drilled into bedrock on the western plateau of Mt El'brus (43°20′53.9′′ N, 42°25′36.0′′ E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009 (Mikhalenko et al., 2015). Here, we report on the results of the water stable isotope composition from this ice core with additional data from the shallow cores. The distinct seasonal cycle of the isotopic composition allows dating by annual layer counting. Dating has been performed for the upper 126 m of the deep core combined with 20 m from the shallow cores. The whole record covers 100 years, from 2013 back to 1914. Due to the high accumulation rate (1380 mm w.e. year−1) and limited melting, we obtained isotopic composition and accumulation rate records with seasonal resolution. These values were compared with available meteorological data from 13 weather stations in the region and also with atmosphere circulation indices, back-trajectory calculations, and Global Network of Isotopes in Precipitation (GNIP) data in order to decipher the drivers of accumulation and ice core isotopic composition in the Caucasus region. In the warm season (May–October) the isotopic composition depends on local temperatures, but the correlation is not persistent over time, while in the cold season (November–April), atmospheric circulation is the predominant driver of the ice core's isotopic composition. The snow accumulation rate correlates well with the precipitation rate in the region all year round, which made it possible to reconstruct and expand the precipitation record at the Caucasus highlands from 1914 until 1966, when reliable meteorological observations of precipitation at high elevation began.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Climate of the Past, Copernicus GmbH, Vol. 12, No. 9 ( 2016-09-29), p. 1933-1948
    Abstract: Abstract. The last interglacial period (LIG, ∼ 129–116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Climate of the Past, Copernicus GmbH, Vol. 13, No. 11 ( 2017-11-17), p. 1609-1634
    Abstract: Abstract. Climate trends in the Antarctic region remain poorly characterized, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O) composites and temperature reconstructions since 0 CE, binned at 5- and 10-year resolution, for seven climatically distinct regions covering the Antarctic continent. Following earlier work of the Antarctica2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica and the whole continent. We use three methods for our temperature reconstructions: (i) a temperature scaling based on the δ18O–temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-Interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data, (ii) a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and (iii) a composite-plus-scaling approach used in a previous continent-scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0 to 1900 CE, we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval occurs from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the Antarctic Peninsula regions, and these trends are robust across the distribution of records that contribute to the unweighted isotopic composites and also significant in the weighted temperature reconstructions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of natural variability over the last 2000 years. However, projected warming of the Antarctic continent during the 21st century may soon see significant and unusual warming develop across other parts of the Antarctic continent. The extended Antarctica2k ice core isotope database developed by this working group opens up many avenues for developing a deeper understanding of the response of Antarctic climate to natural and anthropogenic climate forcings. The first long-term quantification of regional climate in Antarctica presented herein is a basis for data–model comparison and assessments of past, present and future driving factors of Antarctic climate.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Earth System Dynamics, Copernicus GmbH, Vol. 8, No. 3 ( 2017-07-18), p. 577-616
    Abstract: Abstract. Global temperature is a fundamental climate metric highly correlated with sea level, which implies that keeping shorelines near their present location requires keeping global temperature within or close to its preindustrial Holocene range. However, global temperature excluding short-term variability now exceeds +1 °C relative to the 1880–1920 mean and annual 2016 global temperature was almost +1.3 °C. We show that global temperature has risen well out of the Holocene range and Earth is now as warm as it was during the prior (Eemian) interglacial period, when sea level reached 6–9 m higher than today. Further, Earth is out of energy balance with present atmospheric composition, implying that more warming is in the pipeline, and we show that the growth rate of greenhouse gas climate forcing has accelerated markedly in the past decade. The rapidity of ice sheet and sea level response to global temperature is difficult to predict, but is dependent on the magnitude of warming. Targets for limiting global warming thus, at minimum, should aim to avoid leaving global temperature at Eemian or higher levels for centuries. Such targets now require negative emissions, i.e., extraction of CO2 from the air. If phasedown of fossil fuel emissions begins soon, improved agricultural and forestry practices, including reforestation and steps to improve soil fertility and increase its carbon content, may provide much of the necessary CO2 extraction. In that case, the magnitude and duration of global temperature excursion above the natural range of the current interglacial (Holocene) could be limited and irreversible climate impacts could be minimized. In contrast, continued high fossil fuel emissions today place a burden on young people to undertake massive technological CO2 extraction if they are to limit climate change and its consequences. Proposed methods of extraction such as bioenergy with carbon capture and storage (BECCS) or air capture of CO2 have minimal estimated costs of USD 89–535 trillion this century and also have large risks and uncertain feasibility. Continued high fossil fuel emissions unarguably sentences young people to either a massive, implausible cleanup or growing deleterious climate impacts or both.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...