GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: The oceanic uptake and resulting storage of the anthropogenic CO2 (Cant) that humans have emitted into the atmosphere moderates climate change. Yet our knowledge about how this uptake and storage has progressed in time remained limited. Here, we determine decadal trends in the storage of Cant by applying the eMLR(C*) regression method to ocean interior observations collected repeatedly since the 1990s. We find that the global ocean storage of Cant grew from 1994 to 2004 by 29 ± 3 Pg C dec−1 and from 2004 to 2014 by 27 ± 3 Pg C dec−1 (±1σ). The storage change in the second decade is about 15 ± 11% lower than one would expect from the first decade and assuming proportional increase with atmospheric CO2. We attribute this reduction in sensitivity to a decrease of the ocean buffer capacity and changes in ocean circulation. In the Atlantic Ocean, the maximum storage rate shifted from the Northern to the Southern Hemisphere, plausibly caused by a weaker formation rate of North Atlantic Deep Waters and an intensified ventilation of mode and intermediate waters in the Southern Hemisphere. Our estimates of the Cant accumulation differ from cumulative net air-sea flux estimates by several Pg C dec−1, suggesting a substantial and variable, but uncertain net loss of natural carbon from the ocean. Our findings indicate a considerable vulnerability of the ocean carbon sink to climate variability and change. Key Points: - The global ocean storage of anthropogenic carbon grew by 29 ± 3 and 27 ± 3 Pg C dec−1 from 1994 to 2004 and 2004 to 2014, respectively - The change in oceanic storage of anthropogenic carbon relative to the atmospheric CO2 growth decreased by 15 ± 11% from the first to the second decade - This reduction is attributed to a decrease of the ocean buffer capacity and changes in ocean circulation
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-27
    Description: Coastal upwelling regimes are some of the most productive ecosystems in the ocean but are also among the most vulnerable to ocean acidification (OA) due to naturally high background concentrations of CO 2 . Yet our ability to predict how these ecosystems will respond to additional CO 2 resulting from anthropogenic emissions is poor. To help address this uncertainty, researchers perform manipulative experiments where biological responses are evaluated across different CO 2 partial pressure ( p CO 2 ) levels. In upwelling systems, however, contemporary carbonate chemistry variability remains only partly characterized and patterns of co-variation with other biologically important variables such as temperature and oxygen are just beginning to be explored in the context of OA experimental design. If co-variation among variables is prevalent, researchers risk performing OA experiments with control conditions that are not experienced by the focal species, potentially diminishing the ecological relevance of the experiment. Here, we synthesized a large carbonate chemistry dataset that consists of carbonate chemistry, temperature, and oxygen measurements from multiple moorings and ship-based sampling campaigns from the California Current Ecosystem (CCE), and includes fjord and tidal estuaries and open coastal waters. We evaluated patterns of p CO 2 variability and highlight important co-variation between p CO 2 , temperature, and oxygen. We subsequently compared environmental p CO 2 –temperature measurements with conditions maintained in OA experiments that used organisms from the CCE. By drawing such comparisons, researchers can gain insight into the ecological relevance of previously published OA experiments, but also identify species or life history stages that may already be influenced by contemporary carbonate chemistry conditions. We illustrate the implications co-variation among environmental variables can have for the interpretation of OA experimental results and suggest an approach for designing experiments with p CO 2 levels that better reflect OA hypotheses while simultaneously recognizing natural co-variation with other biologically relevant variables.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-10
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. The major changes are: data from 106 more cruises added, extension of time coverage until 2019, and the inclusion of available discrete fugacity of CO2 (fCO2) values in the merged product files. GLODAPv2.2020 includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 106 new cruises with the data from the 840 quality-controlled cruises of the GLODAPv2.2019 data product. They correct for errors related to measurement, calibration, and data handling practices, while taking into account any known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 μmol kg−1 in dissolved inorganic carbon, 4 μmol kg−1 in total alkalinity, 0.01–0.02, depending on region, in pH, and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete fCO2 were not subjected to bias comparison or adjustments. The original data, their documentation and doi codes are available at the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, last access: 22 June 2020). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). The bias corrected product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2020 methods and provides a broad overview of the secondary quality control procedures and results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-19
    Description: The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968–2007 to 1968–2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...