GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (19)
  • Commission of the European Communities  (2)
  • Vreie Universiteit Brussels  (1)
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    Commission of the European Communities
    In:  Water Pollution Research Reports, 28 . pp. 413-424.
    Publication Date: 2018-03-20
    Description: A vertical flux pulse related to spring phytoplankton development was recorded ·by moored sediment traps at 42°N 06°E in the Gulf of Lions. May 1990 trap samples from 200m to 2000m depth were comprised of freshly produced organic matter and selected microplankton species from the overlaying water column. This vertical flux event was transmitted to the deep sea floor with a high particle sinking velocity of 〉140 m day-1. Maximal vertical fluxes of 35 mg C m-2 day-1 and 1.2 mg chl.a m-2 day-1 recorded during this event are low compared to the exports from collapsing spring blooms at higher latitudes but demonstrate that particle production and degradation within the spring pelagic system were not in balance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Commission of the European Communities
    In:  In: EROS 2000 (European river ocean system) third workshop of the north-west mediterranean sea. , ed. by Martin, J. M. and Barth, H. Water Pollution Research Reports, 28 . Commission of the European Communities, Brussels, Belgium, pp. 401-412. ISBN 2872630791
    Publication Date: 2018-03-20
    Description: Rare earth element (REE) composition of sinking particles was examined in time-series sediment trap samples collected from four depths (200, 500, 1000, 2000 m) in the Gulf of Lions. Vertical flux profiles showed the occurrence of a sedimentation pulse which resulted in the rapid sinking of phytoplankton aggregates to 2000 m depth. These particles were characterized by REE patterns similar to those in the upper 200 m indicating that little, if any, additional REE scavenging occurred during the sedimentation event. In contrast, after the sedimentation pulse, particles from deep waters showed an enrichment of light-REE (LREE) relative to heavy-REE (HREE) and a positive Ce anomaly. Comparing REE patterns in particles from the upper water column (200 m) with those from depth (1000, 2000 m) during and following the sedimentation pulse indicates that time is a key factor in determining REE scavenging by sinking particles. This is particularly evident for the preferential scavenging of Ce (IV) which is most pronounced in the finer, slowly sinking, and presumably older particles. These findings are consistent with REE patterns in sea water from the northwestern Mediterranean which show a strong negative Ce anomaly and gradual enrichment of REE with increasing atomic number. The enrichment of LREE relative to HREE in particles from deep waters results either preferential scavenging of LREE on particles, analogous to the enrichment of Ce, or selective dissolution of HREE in association with particle remineralization processes, or both; this aspect of REE behaviour merits further study.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Vreie Universiteit Brussels
    In:  In: European Network for Integrated Marine Science Analysis. , ed. by Dehairs, F. and Goeyens, L. Vreie Universiteit Brussels, Brüssel, Belgium.
    Publication Date: 2019-09-13
    Type: Book chapter , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bathmann, Ulrich; Peinert, Rolf; Noji, Thomas T; von Bodungen, Bodo (1990): Pelagic origin and fate of sedimenting particles in the Norwegian Sea. Progress in Oceanography, 24(1-4), 117-125, https://doi.org/10.1016/0079-6611(90)90024-V
    Publication Date: 2023-03-16
    Description: A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g/m**2/y, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10**3/m**2/d). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.
    Keywords: AWI_BioOce; Biological Oceanography @ AWI; DATE/TIME; Date/time end; Duration, number of days; Flux of total mass; Lithogenic, flux; Norwegian Sea; Sample code/label; Trap, sediment; TRAPS; VP-2_trap
    Type: Dataset
    Format: text/tab-separated-values, 55 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: von Bodungen, Bodo; Antia, Avan N; Bauerfeind, Eduard; Haupt, Olaf; Koeve, Wolfgang; Machado, E; Peeken, Ilka; Peinert, Rolf; Reitmeier, Sven; Thomsen, C; Voss, Maren; Wunsch, M; Zeller, Ute; Zeitzschel, Bernt (1995): Pelagic processes and vertical flux of particles: an overview of a long-term comparative study in the Norwegian Sea and Greenland Sea. Geologische Rundschau, 84(1), 11-27, https://doi.org/10.1007/BF00192239
    Publication Date: 2023-05-12
    Description: Pelagic processes and their relation to vertical flux have been studied in the Norwegian and Greenland Seas since 1986. Results of long-term sediment trap deployments and adjoining process studies are presented, and the underlying methodological and conceptional background is discussed. Recent extension of these investigations at the Barents Sea continental slope are also presented. With similar conditions of input irradiation and nutrient conditions, the Norwegian and Greenland Seas exhibit comparable mean annual rates of new and total production. Major differences can be found between these regions, however, in the hydrographic conditions constraining primary production and in the composition and seasonal development of the plankton. This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composition of particles exported and in different processes leading to their modification in the mid-water layers. In the Norwegian Sea heavy grazing pressure during early spring retards the accumulation of phytoplankton stocks and thus a mass sedimentation of diatoms that is often associated with spring blooms. This, in conjunction with the further seasonal development of zooplankton populations, serves to delay the annual peak in sedimentation to summer or autumn. Carbonate sedimentation in the Norwegian Sea, however, is significantly higher than in the Greenland Sea, where physical factors exert a greater control on phytoplankton development and the sedimentation of opal is of greater importance. In addition to these comparative long-term studies a case study has been carried out at the continental slope of the Barents Sea, where an emphasis was laid on the influence of resuspension and across-slope lateral transport with an analysis of suspended and sedimented material.
    Keywords: Global Environmental Change: The Northern North Atlantic; Jan-Mayen Current; MOOR; Mooring; OG4; OG5; SFB313; SFB313Moorings; Silicon Cycling in the World Ocean; SINOPS
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-14
    Keywords: Chlorophyll a; CTD/Rosette; CTD-RO; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lofoten; Phosphate; PO04_65; SFB313
    Type: Dataset
    Format: text/tab-separated-values, 16 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-14
    Keywords: Chlorophyll a; CTD/Rosette; CTD-RO; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lofoten; Phosphate; PO04_70; SFB313
    Type: Dataset
    Format: text/tab-separated-values, 14 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-14
    Keywords: Chlorophyll a; CTD/Rosette; CTD-RO; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lofoten; Phosphate; PO04_72; SFB313
    Type: Dataset
    Format: text/tab-separated-values, 12 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Peinert, Rolf; Antia, Avan N; Bauerfeind, Eduard; von Bodungen, Bodo; Haupt, Olaf; Krumbholz, Marita; Peeken, Ilka; Ramseier, René O; Voss, Maren; Zeitzschel, Bernt (2001): Particle flux variability in the polar and Atlantic biogeochemical provinces of the Nordic Seas. In: Schäfer, W; Ritzrau, M; Schlüter & J. Thiede (eds.) The Northern North Atlantic: A Changing Environment, Springer Verlag, Berlin, 500 pp, 53-68, https://doi.org/10.1007/978-3-642-56876-3_4
    Publication Date: 2023-01-13
    Description: A decade of particle flux measurements providse the basis for a comparison of the eastern and western province s of the Nordic Seas. Ice-related physical and biological seasonality as well as pelagic settings jointly control fluxes in the western Polar Province which receive s southward flowing water of Polar origin. Sediment trap data from this realm highlight a predominantly physical flux control which leads to exports of siliceous particle s within the biological marginal ice zone as a prominent contributor. In the northward flowing waters of the eastern Atlanti c Province, feeding strategies, life histories and the succession ofdominant mesozooplankters (copepods and pteropods) are central in controlling fluxes. Furthermore, more calcareous matter is exported here with a shift in flux seasonality towards summer I autumn. Dominant pelagic processes modeled numerically as to their impact on annual organic carbon exports for both provinces confirm that interannual flux variability is related to changes in the respecti ve control mechanisms. Annual organic carbon export s are strikingly similar in the Polar and Atlantic Province s (2.4 and 2.9 g/m**2/y at 500 m depth), despite major differences in flux control. The Polar and Atlantic Provinces, however, can be distinguished according to annual fluxes of opal (1.4 and 0.6 g/m**2/y) and carbonate (6.8 and 10.4 g/m**2/y). Interannual variability may blur this in single years. Thus, it is vital to use multi-annual data sets when including particle exports in general biogeochemical province descriptions. Vertical flux profiles (collections from 500 m, 1000 m in both provinces and 300-600 m above the seafloor deviate from the general vertical decline of fluxes due to particle degradation during sinking. At depths〉 1000 m secondary fluxes (laterally advectedlresuspended particles) are often juxtaposed to primary (pelagic) fluxes, a pattern which is most prominent in the Atlantic Province. Spatial variability within the Atlantic Province remains poorly understood, and the same holds true for interannual variability. No proxies are at hand for this province to quantitatively relate fluxes to physical or biological pelagic properties. For the seasonally ice-covered Polar Province a robust relationship exists between particle export and ambient ice-regime (Ramseier et al. this volume; Ramseier et al. 1999). Spatial flux patterns may be differentiated and interannual variability can be analyzed in this manner to impro ve our ability to couple pelagic export patterns with benthic and geochemical sedimentary processes in seasonally ice-covered seas.
    Keywords: Global Environmental Change: The Northern North Atlantic; SFB313
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-14
    Keywords: Atlantic_Province; Calcium carbonate; Calcium carbonate, flux; Carbon, organic, particulate; Carbon, organic, particulate, flux per year; DATE/TIME; Date/time end; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lithogenic, flux; Lithogenic material; Particulate silica, flux; SFB313; Silica, particulate; Total, flux per year; Trap, sediment; TRAPS
    Type: Dataset
    Format: text/tab-separated-values, 150 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...