GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    China Geological Survey
    In:  [Paper] In: 8. International Conference on Gas Hydrates (ICGH8-2014), 28.07.-01.08.2014, Beijing, China . Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), Beijing, China, 28 July - 1 August, 2014 ; T3-57 .
    Publication Date: 2016-12-21
    Description: The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. Currently, process conditions under which this goal can be achieved efficiently are largely unknown. While the recent Ignik Sikumi field test suggests that a combination of N2/CO2 injection with depressurization yields effective CH4 production, in a previous study (Deusner et al., 2012) we showed that a combination of CO2 injection and thermal stimulation eliminates mass transfer limitations observed at cold reservoir temperatures. These high-pressure flow-through studies revealed that the injection of supercritical CO2 at 95 °C triggers dissociation of CH4-hydrates and counters rapid CO2-hydrate formation in the near-injection region. We also observed a strong effect of reservoir temperature on CH4 production and CO2 retention. The efficiency and yield of CH4 production was highest at a sediment temperature of 8 °C compared to 2 °C and 10 °C. At 2 °C CO2 hydrate formation was rapid and clogged the sediment at the injection spot. Outside the CO2-hydrate stability region, at 10 °C, we observed fast CO2 breakthrough and a comparably low CH4 production. Experiments comparing discontinuous and continuous CO2 injection showed that alternating periods of equilibration and CO2 injection improved the overall CH4 production. We hypothesize that slow formation of secondary CO2-rich hydrate improves the accessibility of the CH4-hydrate distributed in the sediment by locally changing permeability and fluid flow patterns. In situ measurements showed dynamic changes of local p-/T-gradients due to gas hydrate dissociation or dissolution and secondary gas hydrate formation. In addition, continued reconfiguration of guest molecules in transiently formed mixed hydrates maintain elevated gas exchange kinetics. Online effluent fluid analysis under in-situ pressure conditions indicated that CH4 released from CH4-hydrates is largely dissolved in liquid CO2.. It is a current objective of our studies to further elucidate rheological properties and gas exchange efficiencies of CO2-CH4 mixed fluids that approach equilibrium with gas hydrates and to study the effect of in situ CH4-CO2-hydrate conversion and secondary gas hydrate formation on sediment geomechanical parameters.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-10-06
    Description: Uncertainties concerning deep-seabed mining relate to the expected impacts on the abyssal benthic and pelagic environment and its ecosystems but also include geopolitical, economic, societal and cultural uncertainty. The uncertain impacts from mining lead to anxiety and a low societal acceptance for the activity and are not the same for everybody at the same time. Hence, uncertainty is an important element of the risk involved in deep-seabed mining. This chapter describes the different risks involved, develops a methodology for risk assessment for the exploitation of marine mineral resources that takes into consideration the state of knowledge and evolving research on deep-sea ecosystems, and informs on possible environmental threshold values in relation to deep-seabed mining operations.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-02-08
    Description: The migration of methane through the gas hydrate stability zone (GHSZ) in the marine subsurface is characterized by highly dynamic reactive transport processes coupled to thermodynamic phase transitions between solid gas hydrates, free methane gas, and dissolved methane in the aqueous phase. The marine subsurface is essentially a water-saturated porous medium where the thermodynamic instability of the hydrate phase can cause free gas pockets to appear and disappear locally, causing the model to degenerate. This poses serious convergence issues for the general-purpose nonlinear solvers (e.g., standard Newton), and often leads to extremely small time-step sizes. The convergence problem is particularly severe when the rate of hydrate phase change is much lower than the rate of gas dissolution. In order to overcome this numerical challenge, we have developed an all-at-once Newton scheme tailored to our gas hydrate model, which can handle rate-based hydrate phase change coupled with equilibrium gas dissolution in a mathematically consistent and robust manner.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Springer
    In:  In: World Atlas of Submarine Gas Hydrates in Continental Margins. , ed. by Mienert, J., Berndt, C. 〈https://orcid.org/0000-0001-5055-0180〉, Tréhu, A. M., Camerlenghi, A. and Liu, C. S. Springer, Cham, pp. 451-461.
    Publication Date: 2022-01-06
    Description: The Black Sea has undergone several limnic and marine stages due to fluctuations in the global sea level. The exchange of saline water from the Mediterranean Sea to the Black Sea through the Bosporus Strait was interrupted when the sea level dropped below the Bosporus sill. This induced limnic conditions, while marine conditions were established after the reconnection to saline Mediterranean seawater. Extended river fan systems developed during sea level low-stands, providing large amounts of organic material being buried by rapid sedimentation on the slopes of the Black Sea margins. The biogenic degradation of this material produces most of the methane gas expelled into the anoxic water column today. This largely happens by ubiquitous cold vents at ~700 m water depth (i.e. at the stability boundary of methane hydrates) and by mud volcanoes in ~2000 m water depth. A significant amount of gas is expected to accumulate in the sediment within the methane hydrate stability zone. However, bottom-simulating reflectors, the seismic indicator for gas hydrates, are not found everywhere along the margin. Recent analyses of the Danube and Dniepr fans have revealed a discontinuous gas hydrate formation in an area with no active seeps, while areas of active seepage located in the vicinity of BSR reflections held no gas hydrates. In addition, the ongoing diffusion of salt into the uppermost Black Sea sediment pore space since the last glacial maximum further reduces the volume of the gas hydrate stability zone. Estimates of the total amount of gas stored in gas hydrates therefore require a detailed structural analysis prior to regional- or basin-scale modelling attempts.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-05-18
    Description: Carbonate precipitates recovered from 2,000 m water depth at the Dolgovskoy Mound (Shatsky Ridge, north eastern Black Sea) were studied using mineralogical, geochemical and lipid biomarker analyses. The carbonates differ in shape from simple pavements to cavernous structures with thick microbial mats attached to their lower side and within cavities. Low δ13C values measured on carbonates (−41 to −32‰ V-PDB) and extracted lipid biomarkers indicate that anaerobic oxidation of methane (AOM) played a crucial role in precipitating these carbonates. The internal structure of the carbonates is dominated by finely laminated coccolith ooze and homogeneous clay layers, both cemented by micritic high-magnesium calcite (HMC), and pure, botryoidal, yellowish low-magnesium calcite (LMC) grown in direct contact to microbial mats. δ18O measurements suggest that the authigenic HMC precipitated in equilibrium with the Black Sea bottom water while the yellowish LMC rims have been growing in slightly 18O-depleted interstitial water. Although precipitated under significantly different environmental conditions, especially with respect to methane availability, all analysed carbonate samples show lipid patterns that are typical for ANME-1 dominated AOM consortia, in the case of the HMC samples with significant contributions of allochthonous components of marine and terrestrial origin, reflecting the hemipelagic nature of the primary sediment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-07
    Description: The exchange of CH4 by CO2 in gas hydrates is of interest for the production of natural gas from methane hydrate with net zero climate gas balance, and for managing risks that are related to sediment destabilization and mobilization after gas-hydrate dissociation. Several experimental studies on the dynamics and efficiency of the process exist, but the results seem to be partly inconsistent. We used confocal Raman spectroscopy to map an area of several tens to hundreds µm of a CH4 hydrate sample during its exposure to liquid and gaseous CO2. On this scale, we could identify and follow different processes in the sample that occur in parallel. Next to guest-molecule exchange, gas-hydrate dissociation also contributes to the release of CH4. During our examination period, about 50% of the CO2 was bound by exchange for CH4 molecules, while the other half was bound by new formation of CO2 hydrates. We evaluated single gas-hydrate grains with confirmed gas exchange and applied a diffusion equation to quantify the process. Obtained diffusion coefficients are in the range of 10−13–10−18 m2/s. We propose to use this analytical diffusion equation for a simple and robust modeling of CH4 production by guest-molecule exchange and to combine it with an additional term for gas-hydrate dissociation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-07
    Description: The deep-sea mining industry is currently at a point where large-sale, commercial polymetallic nodule exploitation is becoming a more realistic scenario. At the same time, certain aspects such as the spatiotemporal scale of impacts, sediment plume dispersion and the disturbance-related biological responses remain highly uncertain. In this paper, findings from a small-scale seabed disturbance experiment in the German contract area (Clarion-Clipperton Zone, CCZ) are described, with a focus on the soft-sediment ecosystem component. Despite the limited spatial scale of the induced disturbance on the seafloor, this experiment allowed us to evaluate how short-term (〈 1 month) soft-sediment changes can be assessed based on sediment characteristics (grain size, nutrients and pigments) and metazoan meiofaunal communities (morphological and metabarcoding analyses). Furthermore, we show how benthic measurements can be combined with numerical modelling of sediment transport to enhance our understanding of meiofaunal responses to increased sedimentation levels. The lessons learned within this study highlight the major issues of current deep-sea mining-related ecological research such as deficient baseline knowledge, unrepresentative impact intensity of mining simulations and challenges associated with sampling trade-offs (e.g., replication).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-07
    Description: Seafloor heat flow measurements are utilized to determine the geothermal regime of the Danube deep-sea fan in the western Black Sea and are presented in the larger context of regional gas hydrate occurrences. Heat flow data were collected across paleo-channels in water depths of 550–1460 m. Heat flow across levees ranges from 25 to 30 mW m−2 but is up to 65 mW m−2 on channel floors. Gravity coring reveals sediment layers typical of the western Black Sea, consisting of three late Pleistocene to Holocene units, notably red clay within the lowermost unit cored. Heat flow derived from the bottom-simulating reflector (BSR), assumed to represent the base of the gas hydrate stability zone (GHSZ), deviates from seafloor measurements. These discrepancies are linked either to fast sedimentation or slumping and associated variations in sediment physical properties. Topographic effects account of up to 50% of heat flow deviations from average values. Combined with climate-induced variations in seafloor temperature and sea-level since the last glacial maximum large uncertainties in the prediction of the base of the GHSZ remain. A regional representative heat flow value is ~30 mW m−2 for the study region but deviations from this value may be up to 100%.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-03-14
    Description: Isolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive background. Particles were imaged with a Specim FX17 near-infrared linescan camera and a motorized stage. A particle mapping procedure was built on existing edge-finding algorithms and a polymer identification method developed using spectra from virgin polymer reference materials. This preliminary work focused on polyethylene, polypropylene, and polystyrene as they are less dense than seawater and therefore likely to be found floating in the open ocean. A total of 27 net tows sampled 2534 suspected MP particles that were imaged and analyzed at sea. Approximately 77.1% of particles were identified as polyethylene, followed by polypropylene (9.2%). A small fraction of polystyrene was detected only at one station. Approximately 13.6% of particles were either other plastic polymers or were natural materials visually misidentified as plastics. Particle size distributions for PE and PP particles with a length greater than 1 mm followed an approximate power law relationship with abundance. This method allowed at-sea, near real-time identification of MP polymer types and particle dimensions, and shows great promise for rapid field measurements of microplastics in net-collected samples.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-06-13
    Description: A stratigraphic complex composed of mass transport deposits (MTDs), where the gas occurrence allows for the formation of a gas chimney and pipe structure, is identified based on seismic interpretation in the QiongDongNan area of the northern South China Sea. During the Fifth Gas Hydrate Drilling Expedition of the Guangzhou Marine Geological Survey, this type of complex morphology that has close interaction with local gas hydrate (GH) distribution was eventually confirmed. A flow-reaction model is built to explore the spatial–temporal matching evolution process of massive GH reservoirs since 30 kyr before the present (BP). Five time snapshots, including 30, 20, 10, and 5 kyr BP, as well as the present, have been selected to exhibit key strata-evolving information. The results of in situ tensile estimation imply fracturing emergence occurs mostly at 5 kyr BP. Six other environmental scenarios and three cases of paleo-hydrate existence have been compared. The results almost coincide with field GH distribution below the bottom MTD from drilling reports, and state layer fracturing behaviors always feed and probably propagate in shallow sediments. It can be concluded that this complex system with 10% pre-existing hydrates results in the exact distribution and occurrence in local fine-grained silty clay layers adjacent to upper MTDs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...