GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nanotechnology.  (1)
  • Sewage-Purification.  (1)
  • Cham :Springer International Publishing AG,  (2)
Document type
Keywords
Publisher
  • Cham :Springer International Publishing AG,  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Nanotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (282 pages)
    Edition: 1st ed.
    ISBN: 9783030049492
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.31
    DDC: 541.395
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Nanophotocatalysts for Fuel Production -- 1.1 Introduction -- 1.2 Quantum Dot Semiconductors -- 1.3 Synthesis of Quantum Dots -- 1.4 Application of Quantum Dots for Fuel Production -- 1.5 Conclusion -- References -- Chapter 2: Highly Stable Metal Oxide-Based Heterostructured Photocatalysts for an Efficient Photocatalytic Hydrogen Production -- 2.1 Photocatalysis -- 2.1.1 Photocatalytic Mechanism -- 2.1.2 Band Edge Positions -- 2.2 Semiconducting Metal Oxides for Photocatalytic Water Splitting -- 2.2.1 Metal Oxide-Based Heterostructured Photocatalysts -- 2.2.1.1 Energy Structure of TiO2 -- 2.2.1.2 Lattice Structure of TiO2 -- 2.3 The Challenges in Photocatalytic H2 Production Using TiO2 Particulate Systems -- 2.4 Strategies for Improving TiO2 Photocatalytic Activity -- 2.4.1 Addition of Sacrificial Reagents -- 2.4.2 TiO2-Based Semiconductors Under UV Light Irradiation -- 2.4.3 Photocatalytic Performance of TiO2 Under Visible Irradiation -- 2.4.4 Functionalization of TiO2 with Carbon Nanomaterials -- 2.4.4.1 Carbon Nanotubes -- 2.4.4.2 Graphene Oxide/Reduced Graphene Oxide (RGO) -- 2.5 Future Scope/Conclusions -- References -- Chapter 3: Novelty in Designing of Photocatalysts for Water Splitting and CO2 Reduction -- 3.1 Introduction -- 3.2 CO2 Reduction -- 3.2.1 Principles of CO2 Reduction -- 3.2.2 By-Products of CO2 Reduction -- 3.2.3 Synthesis of Nanoparticles -- 3.2.3.1 Doping of Photocatalyst -- 3.2.4 Commercial Challenges of CO2 Reduction -- 3.3 Water Splitting -- 3.3.1 The Basic Principle of Water Splitting -- 3.3.2 Photocatalyst for Water Splitting -- 3.3.2.1 Oxide-Based Photocatalyst -- 3.3.2.2 Nitride-Based Photocatalyst -- 3.3.3 Commercial Challenges of Water Splitting -- 3.4 Conclusion and Way Forward -- References. , Chapter 4: Z-Scheme Photocatalysts for the Reduction of Carbon Dioxide: Recent Advances and Perspectives -- 4.1 Introduction -- 4.2 Basic Principles of the Z-Scheme Reduction of CO2 -- 4.3 Advances in Z-Scheme Photocatalytic Reduction of CO2 -- 4.3.1 Z-Scheme Systems with Aqueous Shuttle Redox Mediator -- 4.3.2 All-Solid-State Z-Scheme Systems -- 4.3.3 Semiconductor/Metal-Complex Hybrid Z-Scheme Systems -- 4.3.4 Light Harvesting of Photocatalysts Utilized for the Z-Scheme CO2 Reduction -- 4.3.5 Cocatalyst Strategies for Z-Scheme CO2 Reduction -- 4.4 Summary and Outlook -- References -- Chapter 5: Photocatalysts for Artificial Photosynthesis -- 5.1 Introduction -- 5.2 General Photosynthesis Mechanism -- 5.3 Covalently Linked Molecular Systems for Artificial Photosynthesis -- 5.3.1 Porphyrin-Based Donor-Acceptor Molecular Systems -- 5.3.2 Subphthalocyanine-Based Light-Harvesting Complexes -- 5.3.3 BODIPY-Based Light-Harvesting Systems -- 5.4 Supramolecular Artificial Photosynthetic Systems -- 5.4.1 Metal-Ligand Interactions of Porphyrins/Naphthalocyanines with Electron Acceptors -- 5.4.2 Supramolecular Photosynthetic Complexes Via Crown Ether-Ammonium Cation Interactions -- 5.5 Conclusion -- References -- Chapter 6: Polymeric Semiconductors as Efficient Photocatalysts for Water Purification and Solar Hydrogen Production -- 6.1 Introduction -- 6.2 Photocatalysis -- 6.2.1 Basic Principles of Photocatalytic Reaction -- 6.2.2 Photocatalytic Properties -- 6.2.3 Photocatalytic Mechanism -- 6.3 Photocatalytic Functional Materials: Synthesis, Properties and Applications -- 6.3.1 Graphitic Carbon Nitride (g-C3N4) -- 6.3.1.1 Synthesis of Polymeric g-C3N4 -- 6.3.1.2 Photocatalytic Mechanism of g-C3N4 -- 6.3.1.3 Photodegradation of Chemical Pollutants Using g-C3N4 -- 6.3.1.4 Graphene Oxide-Based Hybrid Photocatalysts. , 6.3.2 Metal-Organic Framework (MOF)-Based Photocatalysts -- 6.3.2.1 Principles -- 6.3.2.2 Photocatalytic Applications of MOFs -- 6.3.3 TiO2-Based Hybrid Photocatalysts -- 6.3.3.1 Principles -- 6.3.3.2 Different Forms of TiO2 and Its Physicochemical Properties -- 6.3.3.3 Structure of TiO2 -- 6.3.3.4 Photocatalytic Mechanism of TiO2 -- 6.3.3.5 Hybrid Photocatalysts Based on TiO2 and Organic Conjugated Polymers -- 6.3.3.5.1 Properties of Polythiophene -- 6.3.3.5.2 Properties of Polyaniline -- 6.3.3.5.3 Properties of Polypyrrole -- 6.3.3.5.4 Synthesis of TiO2-Based Hybrid Photocatalysts with Different Organic Conjugated Polymers -- 6.3.3.5.5 Characterization of TiO2/Conjugated Polymer-Based Hybrid Catalysts -- 6.3.3.5.6 Antibacterial Activity of Photocatalysts -- 6.3.3.6 Environmental Application of Different Photocatalysts -- 6.3.3.6.1 Water Purification -- 6.3.4 Graphene Oxide (GO)-Based Photocatalyst for Dye Degradation and H2 Evolution -- 6.3.4.1 Photodegradation of Chemical Pollutants -- 6.3.4.2 Hydrogen (H2) Evolution Reaction by g-C3N4-Based Functional Photocatalysts -- 6.4 Conclusion -- References -- Chapter 7: Advances and Innovations in Photocatalysis -- 7.1 Introduction -- 7.2 Photocatalysts for Hydrogen Production -- 7.2.1 Nature of Different Sacrificial Agents and Typical Mechanism of Photoreforming -- 7.2.1.1 Methanol as a Sacrificial Agent -- 7.2.1.2 Ethanol as a Sacrificial Agent -- 7.2.1.3 Glycerol as a Sacrificial Agent -- 7.2.1.4 Glucose as a Sacrificial Agent -- 7.2.2 Hydrogen Production from Photocatalytic Wastewater Treatment -- 7.3 Photocatalysts Developed for the Synthesis of Organic Compounds in Mild Conditions -- 7.3.1 The Starting Point -- 7.3.2 The Effect of Supporting Metal Oxides on Titania on Selectivity -- 7.3.3 The Effect of Titania Dopant -- 7.3.4 The Effect of Titania Surface Area. , 7.3.5 The Effect of Substituting Titania -- 7.3.6 The Effect of Reactor and Illumination -- 7.3.7 Cyclohexanol and Cyclohexanone by Gas-Phase Photocatalytic Oxidation? -- 7.4 Photocatalytic Membrane Reactors -- 7.5 Concluding Remarks -- References -- Chapter 8: Solar Light Active Nano-photocatalysts -- 8.1 Introduction -- 8.2 Mechanism of Semiconductor-Mediated Photocatalysis -- 8.2.1 Nano-TiO2 as Photocatalysts -- 8.2.2 Nano-ZnO as Photocatalysts -- 8.2.3 Graphitic Carbon Nitride as Photocatalysts -- 8.2.4 Titanates as Photocatalysts -- 8.2.5 Nano-metal Sulphides as Photocatalysts -- 8.3 Strategies for Making Solar/Visible Light Active Photocatalysts -- 8.3.1 Metal/Non-metal Doping -- 8.3.2 Addition of Photosensitive Materials -- 8.3.3 Construction of Heterojunctions/Composites -- 8.3.4 Construction of Nanohybrid Materials -- 8.3.5 Surface Modification -- 8.4 Conclusion -- References -- Chapter 9: High-Performance Photocatalysts for Organic Reactions -- 9.1 Introduction -- 9.2 Photocatalytic Oxidation of Alcohols -- 9.3 Selective Oxidation and Oxidative Coupling of Amines -- 9.4 Photocatalytic Cyanation -- 9.5 Photocatalytic Cycloaddition and C-C Bond Formation Reactions -- 9.6 Miscellaneous Reactions -- 9.7 Outlook -- 9.8 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Sewage-Purification. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (460 pages)
    Edition: 1st ed.
    ISBN: 9783030803346
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.70
    Language: English
    Note: Intro -- Foreword -- Contents -- About the Editors -- Chapter 1: Analytical Methods for the Determination of Heavy Metals in Water -- 1.1 Introduction -- 1.2 Total Concentration and Speciation Analysis -- 1.3 Health and Legislation -- 1.4 Sample Preparation for Elemental Analysis of Heavy Metals -- 1.4.1 Solid-Phase Extraction -- 1.4.1.1 Classic Solid-Phase Extraction -- 1.4.1.1.1 Modern Sorbents for Classic Solid-Phase Extraction -- 1.4.1.1.2 Micro Solid-Phase Extraction -- 1.4.1.2 Dispersive Solid-Phase Extraction -- 1.4.1.2.1 Dispersion Techniques -- 1.4.1.2.2 Modern Sorbents for Dispersive Solid-Phase Extraction and Dispersive Micro-Solid Phase Extraction -- Nanostructured Materials -- Hybrid Materials -- 1.4.1.3 Magnetic Solid-Phase Extraction -- 1.4.1.3.1 Advanced Magnetic Sorbents -- 1.4.2 Liquid-Liquid Extraction -- 1.4.2.1 Modern Solvents Used in Liquid-Liquid Extraction -- 1.4.2.1.1 Non-ionic or Zwitterionic Surfactants -- 1.4.2.1.2 Ionic Liquids -- 1.4.2.1.3 Deep Eutectic Solvents -- 1.4.2.2 Novel Liquid-Liquid Microextraction Techniques -- 1.4.2.2.1 Dispersive Liquid-Liquid Microextraction Techniques -- 1.4.2.2.2 In-Situ Phase Separation Techniques -- 1.4.2.2.3 Cloud Point Extraction -- 1.4.2.2.4 Non-dispersive Microextraction Techniques -- 1.4.2.3 Liquid-Liquid Extraction in Flow Analysis -- 1.5 Analytical Techniques for Heavy Metal Detection -- 1.5.1 Spectroscopic Techniques -- 1.5.1.1 Atomic Absorption Spectroscopy -- 1.5.1.2 Atomic Fluorescence Spectrometry -- 1.5.1.3 Atomic Emission Spectrometry -- 1.5.1.4 Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.4.1 Single Particle Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.5 Laser-Induced Breakdown Spectroscopy -- 1.5.1.6 X-Ray Fluorescence -- 1.5.1.7 UV-Vis Spectrophotometry -- 1.5.2 Electrochemical Techniques -- 1.5.2.1 Potentiostatic Techniques. , 1.5.2.1.1 Amperometry -- 1.5.2.1.2 Chronocoulometry -- 1.5.2.1.3 Voltammetric Techniques -- 1.5.2.2 Galvanostatic Stripping Chronopotentiometry -- 1.5.2.3 Electrochemiluminescence -- 1.5.3 Other Methods -- 1.5.3.1 Ion Chromatography -- 1.5.3.2 Surface-Enhanced Raman Spectroscopy -- 1.5.3.3 Bio Methods -- 1.6 Conclusions and Future Perspectives -- References -- Chapter 2: Olive-Oil Waste for the Removal of Heavy Metals from Wastewater -- 2.1 Introduction -- 2.2 Olive Tree Pruning as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.2.1 Characterization -- 2.2.2 Biosorption Tests -- 2.3 Olive Stone as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.3.1 Characterization -- 2.3.2 Biosorption Tests -- 2.4 Olive Pomace and Olive-Cake as Biosorbents of Heavy Metals from Aqueous Solutions -- 2.4.1 Characterization -- 2.4.2 Biosorption Tests -- 2.5 Other Valorization Opportunities for Olive-Oil Waste -- 2.6 Conclusions -- References -- Chapter 3: Metal Oxide Composites for Heavy Metal Ions Removal -- 3.1 Introduction -- 3.2 Issues in Environmental Remediation -- 3.3 Different Types of Magnetic Sorbents -- 3.3.1 Iron Oxide Modified Nanoparticle -- 3.3.2 Zeolite -- 3.3.3 Silica -- 3.3.4 Polymer Functionalization -- 3.3.5 Chitosan and Alginate -- 3.3.6 Activated Carbon -- 3.3.7 Carbon Nanotubes (CNTs) and Graphene -- 3.3.8 Agricultural Wastes -- 3.4 Case Studies -- 3.4.1 Characterization -- 3.4.2 Factors Affecting Sorption Processes -- 3.4.3 Agro-Based Magnetic Biosorbents Recovery and Reusability -- 3.5 Conclusion -- References -- Chapter 4: Two-Dimensional Materials for Heavy Metal Removal -- 4.1 Introduction -- 4.2 Heavy Metal Ions Removal Mechanism -- 4.2.1 Surface Complexation -- 4.2.2 Van der Waals Interaction -- 4.2.3 Ion Exchange -- 4.3 Different Types of Two-Dimensional Material for Heavy Metal Removal. , 4.3.1 Graphene-Based Two-Dimensional Materials -- 4.3.1.1 Structure -- 4.3.1.2 Graphene-Based Materials for Heavy Metal Removal -- 4.3.2 Dichalcogenides -- 4.3.2.1 Structure -- 4.3.2.2 Molybdenum Disulfide for Heavy Metal Removal -- 4.3.3 MXenes -- 4.3.3.1 Structure -- 4.3.3.2 MXenes for Heavy Metal Removal -- 4.3.4 Clay Minerals -- 4.3.4.1 Structure -- 4.3.4.2 Clay Mineral for Heavy Metal Removal -- 4.3.5 Layered Double Hydroxides -- 4.3.5.1 Structure -- 4.3.5.2 Layered Double Hydroxides for Heavy Metal Removal -- 4.3.6 Layered Zeolites -- 4.3.6.1 Structure -- 4.3.6.2 Layered Zeolites for Heavy Metal Removal -- 4.3.7 Other Two-Dimensional Materials -- 4.4 Heavy Metal Removal Other than Adsorption -- 4.5 Conclusions and Perspectives -- Appendix: List of Two-Dimensional Materials that Mentioned in this Chapter for Heavy Metal Removal and their Removal Capacities -- References -- Chapter 5: Membranes for Heavy Metals Removal -- 5.1 Introduction -- 5.2 Electrodialysis -- 5.2.1 Electrodialysis Applied to Metal Removal -- 5.2.2 Principle -- 5.2.3 Evaluation and Control Parameters -- 5.2.4 Use in Electroplating Industry -- 5.2.4.1 Zinc -- 5.2.4.2 Chromium -- 5.2.4.3 Copper -- 5.2.4.4 Nickel -- 5.2.5 Use in Mining and Mineral Processing Industry -- 5.2.6 Final Considerations -- References -- Chapter 6: Metal Oxides for Removal of Heavy Metal Ions -- 6.1 Introduction -- 6.2 Adsorption Methods -- 6.3 Metal Oxides for the Removal of Heavy Metal Ions from Water -- 6.3.1 Titanium Dioxide -- 6.3.2 Manganese Dioxide -- 6.3.3 Iron Oxide -- 6.3.4 Aluminum Oxide -- 6.3.5 Binary Metal Oxides -- 6.4 Conclusion -- References -- Chapter 7: Organic-Inorganic Ion Exchange Materials for Heavy Metal Removal from Water -- 7.1 Introduction -- 7.2 Ion Exchange Process -- 7.3 Ion Exchange Materials -- 7.3.1 Inorganic Ion Exchangers -- 7.3.2 Organic Ion Exchangers. , 7.4 Heavy Metal Removal with Ion Exchange Materials -- 7.4.1 Lead (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.2 Mercury (II) Removal from Waste Water with Organic-Inorganic Ion Exchangers -- 7.4.3 Cadmium (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.4 Nickel (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.5 Chromium (III, VI) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.6 Copper (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.7 Zinc (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.5 Conclusion -- References -- Chapter 8: Low-Cost Technology for Heavy Metal Cleaning from Water -- 8.1 Introduction -- 8.2 Sources and Impact -- 8.3 Different Routes of Contamination -- 8.4 Conventional Water Treatment Methods -- 8.4.1 Preliminary Treatment -- 8.4.2 Secondary Water Treatment -- 8.4.3 Tertiary Water Treatment -- 8.4.4 Membrane Filtration -- 8.5 Advanced Technology for Heavy Metal Ion Removal -- 8.5.1 Nano-Adsorption -- 8.5.2 Molecularly-Imprinted Polymers -- 8.5.3 Layered Double Hydroxides (LDH) and Covalent-Organic Framework (COF) -- 8.5.4 Emerging Membrane Technologies -- 8.6 Low-Cost and Biotechnological Approaches -- 8.6.1 Biosorption -- 8.6.2 Microbial Remediation -- 8.6.3 Biotechnological Strategies -- 8.7 Conclusion -- References -- Chapter 9: Use of Nanomaterials for Heavy Metal Remediation -- 9.1 General Introduction -- 9.2 Heavy Metals in the Environment -- 9.2.1 Characteristics of Selected Heavy Metals -- 9.3 Wastewater Treatment -- 9.4 Nanomaterials -- 9.4.1 Clay Minerals -- 9.4.2 Layered Double Hydroxide and Their Mixed-Oxides Counterparts -- 9.4.3 Zeolites -- 9.4.4 Two-dimensional Early Transition Metal Carbides and Carbonitrides -- 9.4.5 Metal Based Nanoparticles. , 9.4.5.1 Zero-valent Metals -- 9.4.5.2 Metal Oxides -- 9.4.6 Carbon-based Materials -- 9.4.6.1 Carbon Nanotubes -- 9.4.6.2 Fullerenes -- 9.4.6.3 Graphene -- 9.4.6.4 Graphene Oxide -- 9.4.6.5 Reduced Graphene Oxide -- 9.4.6.6 Graphitic Carbon Nitride -- 9.4.7 Metal Organic Frameworks -- 9.5 Disadvantages of Using Nanomaterials -- 9.6 Conclusions -- References -- Chapter 10: Ecoengineered Approaches for the Remediation of Polluted River Ecosystems -- 10.1 Introduction -- 10.2 Occurrence of Pollutants, Emerging Contaminants and Their Riverine Fates -- 10.3 Hazardous Effects of Water Contaminants on Aquatic and Terrestrial Biota -- 10.4 Historic Concepts of River Bioremediation -- 10.5 Physico-chemical River Remediation Methods -- 10.6 Eco-engineered River Water Remediation Technologies -- 10.6.1 Plant Based River Remediation Systems -- 10.6.1.1 Constructed Wetlands -- 10.6.1.2 Ecological Floating Wetlands, Beds and Islands -- 10.6.1.3 Eco-tanks -- 10.6.1.4 Bio-racks -- 10.6.2 Microorganisms Based River Remediation Systems -- 10.6.2.1 Biofilm Based Eco-engineered Treatment Systems -- 10.6.2.1.1 Bio-filters in River Bioremediation -- 10.6.2.2 Periphyton Based Technologies -- 10.7 In Situ Emerging Integrated Systems for the River Bioremediation -- 10.8 Concluding Remarks -- References -- Chapter 11: Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies -- 11.1 Introduction -- 11.2 Component of Ballast Water -- 11.3 Aquatic Invasive Species -- 11.4 The International Convention for the Control and Management of Ships Ballast Water and Sediments -- 11.5 IMO Standards for Ballast Water Quality -- 11.6 Management Options of Ballast Water -- 11.7 Ballast Water Treatment Technologies -- 11.7.1 Mechanical Treatment -- 11.7.2 Physical Treatment -- 11.7.2.1 Ultrasound and Cavitation. , 11.7.3 Chemical Treatment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...