GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (11)
  • Springer  (3)
  • Cham :Springer International Publishing AG,  (2)
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Atmospheric science. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1761 pages)
    Edition: 1st ed.
    ISBN: 9783030521714
    Series Statement: Springer Handbooks Series
    DDC: 551.510287
    Language: English
    Note: Intro -- Foreword -- Preface -- About the Editor -- About the Authors -- Contents -- List of Abbreviations -- List of Symbols -- Part A Basics of Atmospheric Measurement Techniques -- 1 Introduction to Atmospheric Measurements -- 1.1 Measuring Meteorological Elements -- 1.2 History -- 1.3 The Structure of the Atmosphere -- 1.4 Devices, Systems, and Typical Specifications -- 1.5 Applications -- 1.6 Future Developments -- 1.7 Further Reading -- References -- 2 Principles of Measurements -- 2.1 Basics of Measurements -- 2.2 History -- 2.3 Errors in Measurement -- 2.4 Regression Analysis -- 2.5 Time Domain and Frequency Domain for Signals and Systems -- 2.6 Dynamics of Measuring Systems -- 2.7 Analog and Digital Signal Processing -- 2.8 Hardware for Digital Measurement Systems -- 2.9 Further Reading -- References -- 3 Quality Assurance and Control -- 3.1 Principles and Definition -- 3.2 History -- 3.3 Elements of Quality Management -- 3.4 Application -- 3.5 Future Developments -- 3.6 Further Reading -- References -- 4 Standardization in Atmospheric Measurements -- 4.1 Background and Definitions -- 4.2 History -- 4.3 Principles and Procedures -- 4.4 Standardization in the Field of Atmospheric Measurements -- 4.5 Future Developments -- 4.6 Further Reading -- References -- 5 Physical Quantities -- 5.1 Selection of Parameters -- 5.2 History and Thermodynamic Standards -- 5.3 Units and Constants -- 5.4 Parameters of Air, Water Vapor, Water, and Ice -- 5.5 Parameterization of Optical Properties of Clouds -- 5.6 Absorption Coefficients for Water Vapor, Ozone, and Carbon Dioxide -- 5.7 Parameters of Soil -- 5.8 Time and Astronomical Quantities -- 5.9 Tables in Other Chapters -- 5.10 Future Developments -- 5.11 Further Reading -- References -- Part B In situ Measurement Techniques -- 6 Ground-Based Platforms -- 6.1 Principles of Platforms -- 6.2 History. , 6.3 Theory -- 6.4 Platforms and Sensor Installations -- 6.5 Specification -- 6.6 Quality Control and Safety -- 6.7 Maintenance -- 6.8 Applications -- 6.9 Future Developments -- 6.10 Further Readings -- References -- 7 Temperature Sensors -- 7.1 Measurement Principles and Parameters -- 7.2 History -- 7.3 Theory -- 7.4 Devices and Systems -- 7.5 Specifications -- 7.6 Quality Control -- 7.7 Maintenance -- 7.8 Applications -- 7.9 Future Developments -- 7.10 Further Reading -- References -- 8 Humidity Sensors -- 8.1 Measurement Principlesand Parameters -- 8.2 History -- 8.3 Theory -- 8.4 Devices and Systems -- 8.5 Specifications -- 8.6 Quality Control -- 8.7 Maintenance -- 8.8 Application -- 8.9 Future Developments -- 8.10 Further Readings -- References -- 9 Wind Sensors -- 9.1 Measurement Principles and Parameters -- 9.2 History -- 9.3 Theory -- 9.4 Devices and Systems -- 9.5 Specifications -- 9.6 Quality Control -- 9.7 Maintenance -- 9.8 Application -- 9.9 Future Developments -- 9.10 Further Reading -- References -- 10 Pressure Sensors -- 10.1 Measurement Principles and Parameters -- 10.2 History -- 10.3 Theory -- 10.4 Devices and Systems -- 10.5 Specifications -- 10.6 Quality Control -- 10.7 Maintenance -- 10.8 Application -- 10.9 Future Developments -- 10.10 Further Reading -- References -- 11 Radiation Sensors -- 11.1 Measurement Principles and Parameters -- 11.2 History -- 11.3 Theory -- 11.4 Devices and Systems -- 11.5 Specifications -- 11.6 Quality Control -- 11.7 Maintenance -- 11.8 Applications -- 11.9 Future Developments -- 11.10 Further Reading -- References -- 12 In-situ Precipitation Measurements -- 12.1 Measurement Principles and Parameters -- 12.2 History -- 12.3 Theory -- 12.4 Devices and Systems -- 12.5 Specifications -- 12.6 Quality Control, Uncertainty, and Calibration -- 12.7 Maintenance -- 12.8 Application -- 12.9 Future Developments. , 12.10 Further Reading -- References -- 13 Visibility Sensors -- 13.1 Measurement Principles and Parameters -- 13.2 History -- 13.3 Theory -- 13.4 Devices and Systems -- 13.5 Specifications -- 13.6 Quality Control -- 13.7 Maintenance -- 13.8 Application -- 13.9 Future Developments -- 13.10 Further Reading -- References -- 14 Electricity Measurements -- 14.1 Measurement Principles and Parameters -- 14.2 History -- 14.3 Theory -- 14.4 Devices and Systems -- 14.5 Specifications -- 14.6 Quality Control -- 14.7 Maintenance -- 14.8 Applications -- 14.9 Future Developments -- 14.10 Further Reading -- References -- 15 Radioactivity Sensors -- 15.1 Measurement Principles and Parameters -- 15.2 History -- 15.3 Theory -- 15.4 Devices and Systems -- 15.5 Specifications -- 15.6 Quality Control -- 15.7 Maintenance -- 15.8 Application -- 15.9 Future Developments -- 15.10 Further Reading -- References -- 16 Gas Analysers and Laser Techniques -- 16.1 Measurement Principles and Parameters -- 16.2 History -- 16.3 Theory -- 16.4 Devices and Systems -- 16.5 Specifications -- 16.6 Quality Control -- 16.7 Maintenance -- 16.8 Applications -- 16.9 Future Developments -- 16.10 Further Reading -- References -- 17 Measurement of Stable Isotopes in Carbon Dioxide, Methane, and Water Vapor -- 17.1 Measurement Principles and Parameters -- 17.2 History of Stable Isotope Measurements in Atmospheric CO2, CH4 and H2O -- 17.3 Theory -- 17.4 Devices and Systems -- 17.5 Specifications -- 17.6 Quality Control -- 17.7 Maintenance -- 17.8 Application -- 17.9 Future Developments -- 17.10 Further Readings -- References -- 18 Measurement of Fundamental Aerosol Physical Properties -- 18.1 Measurement Principles and Parameters -- 18.2 History -- 18.3 Theory -- 18.4 Devices and Systems -- 18.5 Specifications -- 18.6 Quality Control -- 18.7 Maintenance -- 18.8 Application. , 18.9 Future Developments -- 18.10 Further Reading -- References -- 19 Methods of Sampling Trace Substances in Air -- 19.1 Measurement Principles and Parameters -- 19.2 History -- 19.3 Theory -- 19.4 Devices and Systems -- 19.5 Specifications -- 19.6 Quality Control -- 19.7 Maintenance -- 19.8 Application -- 19.9 Future Developments -- 19.10 Further Reading -- References -- 20 Optical Fiber-Based Distributed Sensing Methods -- 20.1 Measurement Principles and Parameters -- 20.2 History -- 20.3 Theory -- 20.4 Devices -- 20.5 Specifications -- 20.6 Quality Control -- 20.7 Maintenance -- 20.8 Applications -- 20.9 Future Developments -- 20.10 Further Reading -- References -- 21 Odor Measurements -- 21.1 Measurement Principles and Parameters -- 21.2 History -- 21.3 Theory -- 21.4 Devices and Systems -- 21.5 Specifications -- 21.6 Quality Control -- 21.7 Maintenance -- 21.8 Application -- 21.9 Future Developments -- 21.10 Further Readings -- References -- 22 Visual Observations -- 22.1 Principles of Visual Observations -- 22.2 History -- 22.3 Theory -- 22.4 Observed Parameters -- 22.5 Quality Control -- 22.6 Application- -- 22.7 Future Developments -- 22.8 Further Readings -- References -- Part C Remote-Sensing Techniques (Ground-Based) -- 23 Sodar and RASS -- 23.1 Measurement Principles and Parameters -- 23.2 History -- 23.3 Theory -- 23.4 Devices and Systems -- 23.5 Specifications -- 23.6 Quality Control -- 23.7 Maintenance -- 23.8 Applications -- 23.9 Future Developments -- 23.10 Further Reading -- References -- 24 Backscatter Lidar for Aerosol and Cloud Profiling -- 24.1 Measurement Prinziples and Parameters -- 24.2 History -- 24.3 Theory -- 24.4 Devices and Systems -- 24.5 Specifications -- 24.6 Quality Control -- 24.7 Maintenance -- 24.8 Applications -- 24.9 Further Reading -- References -- 25 Raman Lidar for Water-Vapor and Temperature Profiling. , 25.1 Measurement Principles and Parameters -- 25.2 History -- 25.3 Theory -- 25.4 Devices and Systems -- 25.5 Specifications -- 25.6 Quality Control -- 25.7 Maintenance -- 25.8 Applications -- 25.9 Future Developments -- 25.10 Further Reading-2 -- References -- 26 Water Vapor Differential Absorption Lidar -- 26.1 Measurement Principles and Parameters -- 26.2 History -- 26.3 Theory -- 26.4 Devices and Systems -- 26.5 Specifications -- 26.6 Quality Control -- 26.7 Maintenance -- 26.8 Applications -- 26.9 Future Developments -- 26.10 Further Readings -- References -- 27 Doppler Wind Lidar -- 27.1 Measurement Principles and Parameters -- 27.2 History -- 27.3 Theory -- 27.4 Devices and Systems -- 27.5 Specifications -- 27.6 Quality Control -- 27.7 Maintenance -- 27.8 Applications -- 27.9 Future Developments -- 27.10 Further Readings -- References -- 28 Spectrometers -- 28.1 Measurement Principles and Parameters -- 28.2 History -- 28.3 Theory -- 28.4 Devices and Systems -- 28.5 Specifications -- 28.6 Quality Control -- 28.7 Maintenance -- 28.8 Applications -- 28.9 Future Developments -- 28.10 Further Readings -- References -- 29 Passive Solar and Microwave Spectral Radiometers -- 29.1 Measurement Principles and Parameters -- 29.2 History -- 29.3 Theory -- 29.4 Devices and Systems -- 29.5 Specifications -- 29.6 Quality Control -- 29.7 Maintenance -- 29.8 Application -- 29.9 Future Developments -- 29.10 Further Readings -- References -- 30 Weather Radar -- 30.1 Measurement Principles and Parameters -- 30.2 History -- 30.3 Theory -- 30.4 Radar Systems -- 30.5 Specifications -- 30.6 Quality Control -- 30.7 Maintenance -- 30.8 Applications -- 30.9 Future Developments -- 30.10 Further Reading -- References -- 31 Radar Wind Profiler -- 31.1 Measurement Principles and Parameters -- 31.2 History -- 31.3 Theory -- 31.4 Systems -- 31.5 Specifications. , 31.6 Quality Control.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Forests and forestry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (530 pages)
    Edition: 1st ed.
    ISBN: 9783319493893
    Series Statement: Ecological Studies ; v.229
    DDC: 577.30943
    Language: English
    Note: Intro -- Foreword -- Preface -- Contents -- List of Abbreviations -- Part I Introduction -- 1 History of the Waldstein Measuring Sites -- 1.1 Introduction -- 1.2 The Foundation of BITÖK and the Establishment of the Waldstein Sites -- 1.3 Research and Measuring Programs -- 1.3.1 BITÖK Research Projects -- 1.3.2 European Research Projects -- 1.3.3 German Research Projects -- 1.3.4 Permanent Measuring Program -- 1.4 Conclusions -- Reports -- References -- 2 Description of the Waldstein Measuring Site -- 2.1 Introduction -- 2.2 The Waldstein Area -- 2.3 Specific Details of the Measuring Sites -- 2.3.1 Waldstein-Weidenbrunnen -- 2.3.1.1 Forest Stand -- 2.3.1.2 Instrumentation -- 2.3.2 Waldstein-Pflanzgarten -- 2.3.3 Köhlerloh -- 2.4 Conclusions -- References -- Part II Studies of Long-Term Measurements -- 3 Climate, Air Pollutants, and Wet Deposition -- 3.1 Introduction -- 3.2 Material and Methods -- 3.2.1 Main Meteorological Elements and Climatological Observations -- 3.2.2 Air Pollution Measurements -- 3.2.3 Wet Deposition -- 3.3 Results and Discussion -- 3.3.1 Climatology -- 3.3.1.1 Air Temperature -- 3.3.1.2 Precipitation -- 3.3.2 Air Pollutants O3, SO2, and NOx -- 3.3.2.1 Ozone -- 3.3.2.2 Trend Analysis -- 3.3.2.3 Annual O3 Variation and the Accumulated Exposure Over a Threshold of 40 ppb (AOT) -- 3.3.2.4 SO2 and NOx -- 3.3.3 Fog Deposition Fluxes -- 3.3.4 Wet Deposition -- 3.4 Conclusions -- References -- 4 Long-Term Carbon and Water Vapour Fluxes -- 4.1 Introduction -- 4.2 Methods -- 4.2.1 Site Description and Measurement Set-up -- 4.2.2 Data Processing -- 4.2.2.1 Turbulent Flux Processing -- 4.2.2.2 Meteorological Data -- 4.2.2.3 Gap-Filling -- 4.3 Results and Discussion -- 4.3.1 Energy Balance Closure of EC Measurements -- 4.3.2 Adaptations of the Gap-Filling Method for NEE -- 4.3.3 Carbon and Water Vapour Fluxes -- 4.3.3.1 Carbon Exchange. , 4.3.3.2 Water Vapour Fluxes -- 4.3.4 Factors Influencing the Carbon and Water Vapour Exchange -- 4.3.4.1 Development of the Spruce Forest at Waldstein Site -- 4.3.4.2 Instrumental and Methodological Issues -- 4.3.4.3 Influential Factors of Regional Relevance -- 4.4 Conclusion -- References -- Part III Experimental Studies of Energy and Matter Fluxes -- 5 Sap Flow Measurements -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Study Sites -- 5.2.2 Sap Flow Measuring Technique -- 5.2.3 Modeling -- 5.2.4 Eddy Covariance Measurements -- 5.3 Results and Discussions -- 5.3.1 Tree Sap Flow and Canopy Transpiration -- 5.3.2 Tree Profile Measurements -- 5.4 Conclusions -- References -- 6 Coherent Structures and Flux Coupling -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.2.1 Detection Algorithm and Conditional Flux Computation -- 6.2.2 Adapted Experimental Setup -- 6.3 Results and Discussions -- 6.3.1 Exchange Regimes for Vertical Coupling -- 6.3.2 Exchange Regimes for Horizontal Coupling -- 6.3.3 Implementation for Quantifying Daytime Sub-canopy Respiration -- 6.3.4 Implications for Spatial Heterogeneity of Sub-canopy Carbon Dioxide Concentrations, Gradients, and Horizontal Advection -- 6.4 Conclusions -- References -- 7 Dynamics of Water Flow in a Forest Soil: Visualization and Modelling -- 7.1 Introduction -- 7.2 Material and Methods -- 7.2.1 Measurements of Matric Potentials -- 7.2.2 Modelling Matric Potentials and Soil Water Fluxes -- 7.2.3 Comparison Between Measured and Modelled Matric Potentials -- 7.2.4 Visualizing Soil Water Fluxes -- 7.3 Results and Discussion -- 7.3.1 Matric Potential -- 7.3.1.1 Temporal Variability -- 7.3.1.2 Hydraulic Redistribution -- 7.3.1.3 Complexity of Measured and Modelled Matric Potentials -- 7.3.2 Soil Water Fluxes -- 7.3.2.1 Flow Patterns at Profile Scale and Their Influence on Soil Chemistry. , 7.3.2.2 Modelling Results and Preferential Flow at Catchment Scale -- 7.4 Conclusions -- References -- 8 Trace Gas Exchange at the Forest Floor -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Site Description -- 8.2.1.1 Wind, Temperature, and Radiation Measurements -- 8.2.1.2 Trace Gas Measurements -- 8.2.2 Modelling of Fluxes Near the Forest Floor -- 8.2.2.1 Parameterization According to Richter and Skeib (1984, 1991) -- 8.2.2.2 Parameterization According to Foken (1979, 1984) -- 8.3 Results and Discussion -- 8.3.1 Driving Forces of Subcanopy Exchange -- 8.3.1.1 Radiation -- 8.3.1.2 Temperature Profiles -- 8.3.1.3 Wind Profiles -- 8.3.2 Comparison of Measured and Modelled Fluxes -- 8.3.2.1 Friction Velocity -- 8.3.2.2 Sensible Heat Flux -- 8.3.2.3 Stability -- 8.3.3 Comparison of Modelled and Chamber Fluxes -- 8.3.3.1 Radon Fluxes -- 8.3.3.2 Carbon Dioxide Fluxes -- 8.3.4 Determination of the Coupling Situation at the Forest Floor -- 8.3.4.1 Water Vapor -- 8.3.4.2 Carbon Dioxide -- 8.3.5 Reactive Trace Gases -- 8.3.5.1 Ozone Fluxes -- 8.4 Conclusions -- References -- 9 Reactive Trace Gas and Aerosol Fluxes -- 9.1 Introduction -- 9.2 Materials and Methods -- 9.2.1 Trace Gas Flux Instrumentation -- 9.2.2 Aerosol Flux Instrumentation -- 9.3 Results and Discussion -- 9.3.1 Reactive Trace Gas Flux Measurements -- 9.3.1.1 Ozone Fluxes -- 9.3.1.2 NOx Fluxes -- 9.3.1.3 Fluxes of Additional Reactive Trace Gases -- 9.3.2 Aerosol Flux Measurements -- 9.3.2.1 Aerosol Number Fluxes -- 9.3.2.2 Size-Resolved Number Fluxes -- 9.3.2.3 Chemically Speciated Aerosol Fluxes -- 9.3.3 Comparison of Flux Observations and Models -- 9.4 Conclusions -- References -- 10 Isotope Fluxes -- 10.1 Introduction -- 10.2 Materials and Methods -- 10.2.1 Balances of CO2 and 13CO2 -- 10.2.2 NEE Partitioning and 13CO2 Iso-fluxes. , 10.2.3 Hyperbolic Relaxed Eddy Accumulation Method -- 10.2.4 HREA Measuring Systems -- 10.2.5 Measurement Sites and Campaigns -- 10.3 Results and Discussion -- 10.3.1 Differences in HREA Samples of CO2 and δ13C Up- and Downdrafts -- 10.3.2 CO2 Fluxes and 13CO2 Iso-fluxes -- 10.3.3 13CO2 Signatures and NEE Partitioning -- 10.3.4 Structure of CO2 Exchange Mechanisms over Forests -- 10.4 Conclusions -- References -- 11 Influence of Low-Level Jets and Gravity Waves on Turbulent Fluxes -- 11.1 Introduction -- 11.2 Material and Methods -- 11.2.1 Experimental Setup -- 11.2.2 Instruments: Principles of Operation -- 11.2.2.1 Windprofiler/SODAR -- 11.2.2.2 RASS -- 11.2.3 Data Calculation -- 11.2.4 Meteorological Situation -- 11.3 Results and Discussion -- 11.3.1 Low-Level Jets -- 11.3.2 Gravity Waves -- 11.3.2.1 Rotary Spectrum -- 11.3.2.2 Hodograph Analysis -- 11.3.2.3 Stokes Parameter Spectra -- 11.3.2.4 Gravity Wave Characteristics -- 11.4 Conclusions -- References -- 12 Development of Flux Data Quality Tools -- 12.1 Introduction -- 12.2 Materials and Methods -- 12.2.1 Data for This Investigation -- 12.2.2 Integral Turbulence Characteristics -- 12.2.3 Footprint Models -- 12.2.4 Energy Balance Closure -- 12.3 Results and Discussions -- 12.3.1 Integral Turbulence Characteristics -- 12.3.2 Footprints and Data Quality -- 12.3.2.1 Zero-Plane Displacement -- 12.3.2.2 Characteristics of the Underlying Surface -- 12.3.2.3 Footprint Climatology -- 12.3.2.4 Linking Footprint and Flux Data Quality -- 12.3.2.5 Coordinate Rotation -- 12.3.3 Energy Balance Closure -- 12.4 Conclusions -- References -- 13 Interaction Forest-Clearing -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Special Installations at the Forest Edge -- 13.2.2 Methods Applied for This Investigation -- 13.2.2.1 Turbulence Data -- 13.2.2.2 Wavelet Analysis -- 13.3 Results and Discussions. , 13.3.1 Horizontal and Vertical Fields at the Forest Edge -- 13.3.2 Coupling Regime -- 13.3.3 Coherent Structures -- 13.3.4 Penetration of Large-Scale Coherent Structures -- 13.3.5 Energy Balance Closure Problem -- 13.4 Conclusions -- References -- 14 Forest Climate in Vertical and Horizontal Scales -- 14.1 Introduction -- 14.2 Material and Methods -- 14.2.1 Vertical Profile Measurements -- 14.2.1.1 Long-Term Measurements -- 14.2.1.2 EGER Project -- 14.2.1.3 Vertical Coupling Regimes -- 14.2.2 Horizontal Profile Measurements -- 14.2.2.1 Advection Measurements -- 14.2.2.2 Horizontal Mobile Measuring System -- 14.3 Results and Discussions -- 14.3.1 Microclimate Within and Above a Dense Forest -- 14.3.1.1 Vertical (Turbulent) Exchange -- 14.3.1.2 Horizontal and Vertical Advection -- 14.3.2 Microclimate at a Forest Edge -- 14.4 Conclusions -- References -- 15 Catchment Evapotranspiration and Runoff -- 15.1 Introduction -- 15.2 Materials and Methods -- 15.2.1 Hydrological Characterization of the Catchment -- 15.2.1.1 Data -- 15.2.1.2 Statistical Approaches -- 15.2.2 Principal Component Analysis of Time Series -- 15.3 Results and Discussion -- 15.3.1 Long-Term Budgets -- 15.3.1.1 Reliability of Long-Term Budget Data -- 15.3.1.2 Role of Vegetation -- 15.3.1.3 Relation to Residence Time and Size of the Groundwater Store -- 15.3.2 Short-Term Dynamics -- 15.3.2.1 Hydrological Signals Generated in the Topsoil -- 15.3.2.2 Hydrological Signals Propagating Through the Subsoil -- 15.3.3 Evapotranspiration in Hydrological and Hydrogeological Model Approaches -- 15.4 Conclusions -- References -- Part IV Modelling Studies of Energy and Matter Fluxes -- 16 Modeling of Energy and Matter Exchange -- 16.1 Introduction -- 16.2 Materials and Methods -- 16.2.1 Model Descriptions -- 16.2.1.1 FLAME -- 16.2.1.2 ACASA -- 16.2.1.3 STANDFLUX and SVAT-CN. , 16.2.2 Model Drivers and Input Parameters.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 91 (1999), S. 165-189 
    ISSN: 1573-1472
    Keywords: Stable boundary layer ; Boundary-layer height ; Universal functions ; Similarity theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Turbulence measurements up to 11-m height and longterm profile measurements up to 45-m height performed at the German Neumayer Station in Antarctica are used to investigate different components of turbulence closure schemes of the stable boundary layer. The results confirm the linear relationships for the universal functions of momentum and heat exchange in the stability range z/L 〈 0.8 ... 1, whereas the local scaling approach should be used above the surface layer. Furthermore, boundary-layer heights below 50 m are frequently observed at this coastal Antarctic site, mainly due to the influence of stability above the boundary layer. It is shown that the inclusion of this stability into parametrization relations is necessary to provide realistic equilibrium heights of the stable boundary layer. Two relations, based on different physical approaches, were successfully applied for the parametrization of the equilibrium height.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Studia geophysica et geodaetica 32 (1988), S. 318-328 
    ISSN: 1573-1626
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Description / Table of Contents: Summary In the present paper the first results of the international “KOPEX-86“ experiment are presented. The experiment took place at the Kopisty Atmospheric Observatory of the Institute of Physics of the Atmosphere in Prague as part of a special project of the Commission of the Academy of Sciences in Planetary Geophysics (KAPG) in June and July 1986. Using 4 ultrasonic anemometers at 4 levels up to 80 m, Doppler-SODAR and wind-, temperature- and radiation balance gradients from 2 to 80 m, a complex investigation of the atmospheric boundary layer in an industrial area was made. The authors present the first results of the anthropogenic influence on the energy exchange in the atmospheric boundary layer. the influence of a complex terrain on the turbulent characteristics and their vertical distribution.
    Notes: Резюме Сообщaюmся nервые резульmamы меж¶rt;унaро¶rt;ного эксnерuменma „КОПЭКС-86“. Эксnерuменm nрово¶rt;uлся в mеченuе uюня u uюля 1986г. нa коnuсmскоŭ меmеорологuческоŭ обсервamорuu Инсmumуma фuзuкu amмосферы АН ЧССР в рaмкaх nроекma КАПГ. Прu nомощu 4 aкусmuческuх aнемомеmров нa 4 высоmaх ¶rt;о 80 м, ¶rt;оnnлеровского со¶rt;aрa u uзмеренuŭгрa¶rt;uенmов скоросmu веmрa, mемnерamуры u рa¶rt;uaцuu в слое с 2 ¶rt;о 80 м nрово¶rt;uлuсь комnлексные uссле¶rt;овaнuя nогрaнuяного слоя amмосферы. Абmоры nре¶rt;лaгaюm nервые резульmamы, кaсaющuеся uссле¶rt;овaнuŭ aнmроnогенных воз¶rt;еŭсmвuŭ нa знергеmuческuŭ обмен в nогрaннчном слое amмосферы, влuянuŭ nересеченноŭ месmрносmu нa хaрaкmерuсmuкu mурбуленmрносmu u нa uх верmuкaльное рaсnре¶rt;еленuе.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied climatology 53 (1996), S. 259-260 
    ISSN: 1434-4483
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-04-13
    Description: An eddy-covariance system was installed in a young Maritime Pine plantation in Central Portugal immediately after a wildfire that occurred on 13 August 2017, and has been monitoring CO2 fluxes from the 43th post-fire day onwards. The data set comprises the daily sums of the 30-min NEE, Reco and GPP fluxes, with 90 % of the NEE fluxes having been computed directly from the measurements and the Reco and GPP fluxes have been estimated based on the Lloyd-Taylor and Michaelis-Menten functions.
    Keywords: BIO; Biology; carbon dioxide; Carbon dioxide assimilation rate; CentPortugal_pine; DATE/TIME; Eddy-covariance; eddy-covariance system; estimated based on the Lloyd-Taylor and Michaelis-Menten functions; Mediterranean woodland; Net ecosystem exchange of carbon dioxide; ORDINAL NUMBER; Pinus pinaster Ait.; Portugal; Respiration rate, carbon dioxide; wildfire
    Type: Dataset
    Format: text/tab-separated-values, 1110 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schaller, Carsten; Göckede, Mathias; Foken, Thomas (2017): Flux calculation of short turbulent events - comparison of three methods. Atmospheric Measurement Techniques, 10(3), 869-880, https://doi.org/10.5194/amt-10-869-2017
    Publication Date: 2023-01-13
    Description: The eddy covariance method is commonly used to calculate vertical turbulent exchange fluxes between ecosystems and the atmosphere. Besides other assumptions, it requires steady state flow conditions. If this requirement is not fulfilled over the averaging interval of, e.g., 30 min, the fluxes might be mis-calculated. Here two further calculation methods, conditional sampling and wavelet analysis, which do not need the steady state assumption, were implemented and compared to eddy covariance. All fluxes were calculated for 30 min averaging periods, while the wavelet method - using both the Mexican hat and the Morlet wavelet - additionally allowed to obtain a 1 min averaged flux. The data sets used for this investigation are published with 20 Hz sampling frequency.
    Keywords: Chersky; MULT; Multiple investigations; Russia
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ingrisch, Johannes; Biermann, Tobias; Seeber, Elke; Leipold, Thomas; Li, Maoshan; Ma, Yaoming; Xu, Xingliang; Miehe, Georg; Guggenberger, Georg; Foken, Thomas; Kuzyakov, Yakov (2015): Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling. Science of the Total Environment, 505, 1213-1224, https://doi.org/10.1016/j.scitotenv.2014.10.082
    Publication Date: 2023-01-13
    Description: The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with 13CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C/ha), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C/m**2/ in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-term grazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-13
    Keywords: Carbon; Carbon-13/Carbon-12 ratio; Carbon dioxide efflux; Comment; DATE/TIME; Day of experiment; Event label; KEMA_G1; KEMA_G2; KEMA_G3; KEMA_G4; KEMA_P1; KEMA_P2; KEMA_P3; KEMA_P4; KEMA_U1; KEMA_U2; KEMA_U3; KEMA_U4; Latitude of event; Longitude of event; MULT; Multiple investigations; Sample code/label; Tibetan Plateau; Treatment; δ13C
    Type: Dataset
    Format: text/tab-separated-values, 736 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-13
    Keywords: Chersky; DATE/TIME; Humidity, absolute; Methane; MULT; Multiple investigations; Pressure, atmospheric; Russia; Temperature, air; Temperature, technical; Wind velocity, south-north; Wind velocity, vertical; Wind velocity, west-east
    Type: Dataset
    Format: text/tab-separated-values, 2879100 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...