GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Piezoelectric materials.  (1)
  • Millersville :Materials Research Forum LLC,  (1)
  • Cham :Springer International Publishing AG,
Document type
Publisher
  • Millersville :Materials Research Forum LLC,  (1)
  • Cham :Springer International Publishing AG,
Language
Years
  • 1
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Piezoelectric materials. ; Electronic books.
    Description / Table of Contents: The book reviews our current knowledge of piezoelectric materials, including their history, developments, properties, process design, and technical applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (290 pages)
    Edition: 1st ed.
    ISBN: 9781644902097
    Series Statement: Materials Research Foundations Series ; v.131
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Types, Properties and Characteristics of Piezoelectric Materials -- 1. Introduction -- 1.1 Single crystals -- 1.2 Ceramics -- 1.3 Composites -- 1.4 Polymers -- 1.5 Sensor configuration based on shape and size -- 1.6 Classification based on dimension -- 2. Properties of piezoelectric materials -- 2.1 Basic equations -- 2.2 Curie temperature -- 2.3 Phase transition -- 2.4 High dielectric constant -- 2.5 Sensitivity -- 2.6 Electromechanical Coupling Factor (k) -- 2.7 Resistivity (R) and time constant (RC) -- 2.7 Quality factors (mechanical and electrical) -- 2.8 Figure of Merit (FOM) and strain coefficient -- 2.9 Piezoelectric resonance frequency -- 2.10 Thermal expansion -- 2.11 Ageing -- 3. Characterization of piezoelectric materials -- 3.1 Measurement of piezoelectric coefficient -- 3.2 Measurement of dielectric constant -- 3.3 Measurement of Curie temperature -- 3.4 Etching and poling -- 3.5 Measurement of hysteresis (PE/SE) loops -- Conclusions -- References -- 2 -- Fabrication Approaches for Piezoelectric Materials -- 1. Introduction -- 2. Preparation techniques for piezoelectric ceramics -- 2.1 Synthesis of ceramic powders -- 2.1 Solid-state reaction -- 2.2 Co-precipitation -- 2.3 Alkoxide hydrolysis -- 2.4 The sintering method -- 2.5 Templated grain growth -- 3. Piezoelectric materials in device fabrication -- 4. Bio-piezoelectric materials -- 4.1 Types bio-piezoelectric materials -- 4.2 Synthesis strategies -- 4.2.1 Thin films -- 4.2.2 Nanoplatforms -- 5. Challenges -- 5.1 Piezoelectric ceramics -- 5.2 Bio-piezoelectric materials -- Conclusion -- References -- 3 -- Piezoelectric Materials-based Nanogenerators -- 1. Introduction -- 2. Piezoelectricity and crystallography -- 3. Maxwell's equations and piezoelectric nanogenerator -- 4. Piezoelectric materials for nanogenerators. , 4.1 Ceramic -- 4.1.1 Zinc oxide -- 4.1.2 Barium titanate -- 4.1.3 Lead zirconate titanate (PZT) -- 4.2 Polymer -- 4.2.1 PVDF and its copolymer -- 4.2.2 Polylactic acid -- 4.2.3 Cellulose -- 4.3 Ferroelectret -- 4.4 PVDF based composite -- 4.4.1 Ceramic filler -- 4.4.2 Carbon-based filler -- 4.4.3 Metal based filler -- 4.4.4 Other fillers -- 5. Applications of piezoelectric nanogenerator -- 5.1 Power source of electronic devices -- 5.2 Sensing application -- 6. Challenges and future scopes -- Conclusions -- Acknowledgement -- References -- 4 -- Piezoelectric Materials based Phototronics -- 1. Introduction -- 1.1 Piezoelectric effect -- 1.2 Piezotronic effect -- 2. Piezo-phototronic effect -- 3. Piezoelectric semiconductor NWs -- 4. Effect on 2D materials -- 5. Effect on 3rd generation semiconductors -- 6. Piezo-phototronic effect on LED -- 7. Piezo-phototronic effect on solar cell -- 8. Piezo-phototronics in luminescence applications -- 9. Piezo-phototronics in other applications -- References -- 5 -- Piezoelectric Composites and their Applications -- 1. Introduction -- 2. The mechanism of piezoelectricity and principle of PZT-polymer composites -- 3. Piezoelectric materials -- 4 Applications of piezoelectric composite materials -- 4.1 Energy harvesting applications -- 4.2 Medical applications of piezoelectric materials -- 4.2.1 Piezoelectric medical devices -- 4.2.2 Piezoelectric sensors -- 4.2.3 Piezoelectric prosthetic skin -- 4.2.4 Cochlear implants -- 4.2.5 Piezoelectric surgery -- 4.2.6 Ultrasonic dental scaling -- 4.2.7 Microdosing -- 4.2.8 Energy harvesting -- 4.2.9 Catheter applications -- 4.2.10 Neural stimulators -- 4.2.11 Healthcare monitoring -- 5. Structural health monitoring and repair -- Conclusion -- References -- 6 -- Piezoelectric Materials for Biomedical and Energy Harvesting Applications -- 1. Introduction. , 1.1 Types of advance piezoelectric functional materials -- 1.1.1 Polymer piezocomposite -- 1.1.2 Ceramics piezocomposite -- 1.1.3 Polymer ceramics piezocomposite -- 2. Applications -- 2.1 Microelectromechanical system (MEMS) devices -- 2.2 MEMS generators for energy harvesting -- 2.3 MEMS sensor -- 2.3.1 Pressure sensor -- 2.3.2 Healthcare sensor -- 2.3.3 Cell and tisusse regenration -- Conclusion -- Reference -- 7 -- Piezoelectric Thin Films and their Applications -- 1. Piezoelectric thin films -- 2. Lead free piezoelectric thin films -- 2.1 AlN thin films -- 2.2 ZnO thin films -- 2.2.1 Synthesis of ZnO thin films -- 2.3 KNN thin films -- 2.3.1 Synthesis of KNN thin films -- 3. Characterization techniques for piezoelectric thin film -- 3.1 Resonance spectrum method -- 3.2 Pneumatic loading method and normal loading method -- 3.3 Characterizations using capacitance measurements -- 4. Applications -- 4.1 Energy harvesting -- 4.2 Actuators -- 4.3 Electronics -- 4.4 Acoustic biosensors -- 4.5 Surface acoustic wave (SAW) biosensors -- 5. Recent developments in piezoelectric thin film devices -- Conclusion -- References -- 8 -- Bulk Lead-Free Piezoelectric Perovskites and their Applications -- 1. Perovskites -- 2. Lead free perovskites -- 3. Processing of lead-free perovskites -- 4. Piezoelectricity in lead free perovskite -- 4.1 Fundamentals of piezoelectricity -- 5. Different lead-free piezoceramics and their applications -- 5.1 KNN based ceramics -- 5.2 Bismuth sodium titanate based piezoceramics and their applications -- 5.3 BaTiO3 (BT) based piezo-ceramics -- 5.3.1 BaTiO3 ceramics phase boundary -- 5.3.2 Factors in phase boundaries -- 5.3.3 Sintering and curie temperature -- 5.4 Bismuth based piezoceramics -- 5.4.1 Phase boundary in BFO-based ceramics -- 5.4.1.1 Ion substitution -- 5.4.1.2 Addition of ABO3. , 5.4.2 Temperature stability of strain properties -- 5.4.3 Relationship between piezoelectricity and phase boundaries -- 6. Requirements for piezoceramic applications -- 6.1 Actuators -- 6.2 Sensors -- 6.3 Transducers -- 6.3.1 Piezoelectric transducers -- 6.4 Resonators -- Conclusion -- References -- 9 -- Piezoelectric Materials for Sensor Applications -- 1. Introduction -- 2. Piezoelectric mechanism -- 3. Types of piezoelectric materials -- 4. Fabrication methods -- 5. Applications of piezoelectric materials -- 5.1 Applications in wearable and implanted biomedical devices -- 5.2 Piezoelectric materials for energy applications -- 5.3 Piezoelectric materials in tissue engineering -- 5.4 Piezoelectric materials in other applications -- Conclusion and outlook -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...