GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Photocatalysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9783030126193
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.30
    DDC: 541.395
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Role of Nano-photocatalysis in Heavy Metal Detoxification -- 1.1 Introduction -- 1.2 Heavy Metals and Their Toxicological Effects -- 1.2.1 Cadmium -- 1.2.2 Chromium -- 1.2.3 Copper -- 1.2.4 Lead -- 1.2.5 Mercury -- 1.2.6 Nickel -- 1.2.7 Zinc -- 1.3 Overview of Photocatalysis -- 1.4 Mechanism of Photocatalysis -- 1.5 Types of Photocatalysis -- 1.5.1 Homogeneous Photocatalysis -- 1.5.2 Heterogeneous Photocatalysis -- 1.6 Overview and Mechanism of Nano-photocatalysis -- 1.7 Photocatalytic Nanoparticle Synthesis -- 1.7.1 Organic Synthesis -- 1.7.1.1 Plant Extracts Aqueous Solutions -- 1.7.1.2 Microorganisms -- 1.7.2 Chemical Synthesis -- 1.7.2.1 Sol-Gel Method -- 1.7.2.2 Hydrothermal Method -- 1.7.2.3 Polyol Synthesis -- 1.7.2.4 Precipitation Method -- 1.7.3 Physical Synthesis -- 1.7.3.1 Ball Milling -- 1.7.3.2 Melt Mixing -- 1.7.3.3 Physical Vapour Deposition (PVD) -- 1.7.3.4 Laser Ablation -- 1.7.3.5 Sputter Deposition -- 1.8 Mode of Operation on Nano-photocatalysis -- 1.9 Parameters Affecting the Photocatalytic Efficiency -- 1.9.1 Effect of pH of the Reaction Solution -- 1.9.2 Effect of Photocatalyst Concentration -- 1.9.3 Effect of Substrate Adsorption -- 1.9.4 Effect of Dissolved Oxygen -- 1.10 Application -- 1.10.1 Chromium -- 1.10.1.1 pH -- 1.10.1.2 Light Intensity -- 1.10.1.3 Photocatalyst Dosage -- 1.10.1.4 Presence of Organic Compounds -- 1.10.2 Mercury -- 1.10.3 Arsenic -- 1.10.4 Uranium -- 1.11 Disadvantages of Photocatalysis -- 1.12 Photocatalyst Modifications -- 1.12.1 Dye Sensitization -- 1.12.2 Ion Doping -- 1.12.3 Composite Semiconductor -- 1.13 Conclusion -- References -- Chapter 2: Solar Photocatalysis Applications to Antibiotic Degradation in Aquatic Systems -- 2.1 Introduction -- 2.2 Solar Photocatalysis Process. , 2.3 Solar Photocatalysis Treatment for Antibiotic Degradation -- 2.3.1 Trimethoprim -- 2.3.2 Sulfamethoxazole -- 2.3.3 Erythromycin -- 2.3.4 Ciprofloxacin -- 2.4 Conclusions -- References -- Chapter 3: Biomass-Based Photocatalysts for Environmental Applications -- 3.1 Introduction -- 3.2 Background of Biomass-Derived Carbon -- 3.2.1 Biochar -- 3.2.2 Activated Carbon (AC) -- 3.3 Synthesis Methods of Biomass-Derived Carbon -- 3.3.1 Pyrolysis -- 3.3.2 Hydrothermal Carbonization -- 3.3.3 Physical and Chemical Activation -- 3.4 Photocatalysts and Photocatalysis Reactions -- 3.5 Functionalized AC and Applications -- 3.5.1 Types of Functionalized AC -- 3.5.2 Functionalized AC Photocatalysts and Its Application -- 3.6 Future Challenges and Conclusions -- References -- Chapter 4: Application of Bismuth-Based Photocatalysts in Environmental Protection -- 4.1 Introduction -- 4.2 Photocatalytic Oxidation of Pharmaceuticals in Water -- 4.2.1 Tetracycline -- 4.2.2 Ciprofloxacin and Other Antibiotics -- 4.2.3 Carbamazepine -- 4.2.4 Ibuprofen and Diclofenac -- 4.2.5 Other Pharmaceuticals -- 4.3 Photocatalytic Oxidation of Industrial Micropollutants -- 4.3.1 Bisphenol A -- 4.3.2 Oxidation of Other Industrial Pollutants -- 4.4 Oxidation of the Indoor Air Pollutant NOx -- 4.5 Photocatalytic Reduction of Pollutants in Water and Air -- 4.5.1 Reduction of Cr(VI) in Water -- 4.5.2 Reduction of CO2 in Air -- 4.6 Water Splitting -- 4.7 Conclusions -- References -- Chapter 5: Phosphors-Based Photocatalysts for Wastewater Treatment -- 5.1 Introduction -- 5.2 Phosphor Materials: A Historical Background -- 5.3 Inorganic Phosphors in Photocatalysis -- 5.3.1 Types of Inorganic Phosphor Materials -- 5.3.2 Down-Conversion Phosphors in Photocatalysis -- 5.3.3 Up-Conversion Phosphors in Photocatalysis -- 5.3.4 Long-Persistent Phosphors in Photocatalysis. , 5.4 Organic Up-Conversion Phosphors in Photocatalysis -- References -- Chapter 6: Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remedi... -- 6.1 Introduction -- 6.1.1 Heterogeneous Semiconductor Photocatalysis -- 6.1.2 Potential TiO2-Based Photocatalysts -- 6.1.3 Limitations of the Fine Powder Form of TiO2-Based Photocatalysts -- 6.1.3.1 Comparison of Synthesis Methods -- 6.1.3.2 Improvements in TiO2 Performance by Structural Change, Doping, and Hybridization -- 6.2 TiO2 Photocatalysts with Polymer-Based Hybrid Photocatalysts for Wastewater Treatment -- 6.2.1 Need for Immobilization of TiO2-Based Photocatalysts -- 6.2.1.1 Features of a Stable Substrate, and Available Substrates -- 6.2.1.2 Comparison of Polymeric Supports for Wastewater Treatment -- 6.3 TiO2 Photocatalysts Supported with Nanocarbons for Wastewater Treatment -- 6.3.1 TiO2-Functionalized Nanocarbon-Based Photocatalysts -- 6.3.1.1 Potential Photocatalytic Improvements with Carbon Nanostructures for Wastewater Treatment -- 6.4 Conclusions and Future Outlook -- References -- Chapter 7: Investigation in Sono-photocatalysis Process Using Doped Catalyst and Ferrite Nanoparticles for Wastewater Treatment -- 7.1 Introduction -- 7.2 Dependency of Catalytic Activity -- 7.2.1 Size-Dependent Catalytic Activity -- 7.2.2 Shape-Dependent Catalytic Effect -- 7.2.3 Interparticle Distance-Dependent Catalytic Effect -- 7.2.4 Support Interaction and Charge Transfer-Dependent Reactivity -- 7.3 Type of Nanoparticles -- 7.3.1 Non-metallic Nanoparticles -- 7.3.2 Metallic Nanoparticles -- 7.3.3 Semiconductor Nanoparticles -- 7.3.4 Ceramic Nanoparticles -- 7.3.5 Polymer Nanoparticles -- 7.3.6 Lipid-Based Nanoparticles -- 7.4 Types of Nanoparticles Based on Structure -- 7.5 Synthesis and Applications -- 7.5.1 Discussions -- 7.6 Synergetic Effect. , 7.7 Conclusion and Overview -- References -- Chapter 8: Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance -- 8.1 Introduction -- 8.2 Magnetic-Based Photocatalysts in Inactivation of the Microorganism -- 8.3 Factors Affecting the Photocatalytic Bacterial Inactivation -- 8.3.1 Effect of Magnetic-Based Photocatalyst Concentration and Light Intensity -- 8.3.2 Nature of Microorganism -- 8.3.3 Solution pH of Magnetic-Based Photocatalyst Suspension -- 8.3.4 Initial Bacterial Concentration -- 8.3.5 Physiological State of Bacteria -- 8.4 Proposed Mechanism for Bacteria Disinfection by the Magnetic-Based Photocatalyst -- 8.5 Using Magnetic-Based Catalyst in Photocatalytic Abatement of Organics -- 8.6 Photocatalysis for the Simultaneous Treatment of Bacteria and Organics -- 8.7 Conclusion and Future Prospects -- References -- Chapter 9: Antimicrobial Activities of Photocatalysts for Water Disinfection -- 9.1 Introduction -- 9.2 Mechanisms of Photocatalytic Disinfection -- 9.3 Pure and Modified Photocatalysts -- 9.4 Photocatalytic Films and Biofilms -- 9.5 Photocatalytic Composites and Nanocomposites -- 9.6 Materials with Antimicrobial Activity in the Absence of Light -- 9.7 Case Study: Application of Supported Photocatalysts in Disinfection of Whey-Processing Water -- 9.8 Final Considerations -- References -- Chapter 10: Medicinal Applications of Photocatalysts -- 10.1 Introduction -- 10.1.1 Background -- 10.2 Antifungal Activity -- 10.3 Virucidal Activity -- 10.4 Antimicrobial Activity -- 10.5 Anticancer Activity -- 10.6 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Ion exchange. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (230 pages)
    Edition: 1st ed.
    ISBN: 9783030104306
    DDC: 541.3723
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Green Approach: Microbes for Removal of Dyes and Metals via Ion Binding -- Abstract -- 1.1 Introduction -- 1.2 Pollutants in the Environment -- 1.2.1 Toxic Metals -- 1.2.2 Triphenylmethane Dyes -- 1.3 Bioremediation Approaches in Removing Pollutants -- 1.3.1 Non-microbial Strategies -- 1.3.2 Microbial-Based Strategies -- 1.4 Mechanisms for Removal of Pollutant Ions -- 1.4.1 Mechanisms for Removal of Metal Ions -- 1.4.2 Mechanisms for Removal of Dyes -- 1.5 Innovations in the Removal of Pollutant Ions -- 1.6 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes -- Abstract -- 2.1 Introduction -- 2.2 Heavy Metal -- 2.2.1 Chromium -- 2.2.2 Nickel -- 2.2.3 Copper -- 2.2.4 Zinc -- 2.2.5 Cadmium -- 2.2.6 Mercury -- 2.2.7 Lead -- 2.3 Physical Treatment Methods -- 2.3.1 Ultrafiltration -- 2.3.2 Nanofiltration -- 2.3.3 Reverse Osmosis -- 2.3.4 Forward Osmosis -- 2.3.5 Adsorption -- 2.4 Chemical Treatment Methods -- 2.4.1 Electrodialysis Method -- 2.4.2 Fuel Cell Method -- 2.5 Remaining Challenges and Perspectives -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Separation and Purification of Uncharged Molecules -- Abstract -- 3.1 Introduction -- 3.2 Separation and Purification of Vitamin B12 -- 3.2.1 Downstream Processing of Vitamin B12 for Measurement -- 3.3 Separation and Purification of Haemoglobin -- 3.4 Separation and Purification of Uncharged Dyes -- 3.4.1 Purification and Separation of Dyes -- 3.5 Conclusion -- References -- 4 Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions -- Abstract -- 4.1 Introduction -- 4.2 Methodology and Calculations -- 4.2.1 Terminology: Ion Exchange or Adsorption -- 4.2.2 Evidence for Ion Exchange. , 4.2.3 Modeling of Adsorption of Metal Ions on Geopolymers -- 4.2.4 Geopolymer Preparation -- 4.2.5 Washing of the Geopolymeric Adsorbent -- 4.2.6 Comparison Between Geopolymers and Zeolites -- 4.2.7 Geopolymers as Ion Exchangers -- 4.2.7.1 Geopolymers as Ion Exchangers for Alkali Metal Ions -- 4.2.7.2 Geopolymers as Ion Exchangers for Ammonium Ion -- 4.2.7.3 Geopolymers as Ion Exchangers for Alkaline Earth Metals -- 4.2.7.4 Geopolymers as Ion Exchangers for Heavy Metals -- Metakaolin-Based Geopolymers -- Fly Ash-Based Geopolymers -- Zeolite-Based Geopolymers -- 4.2.7.5 Geopolymers as Ion Exchangers/Adsorbents for Cationic Organic Dyes -- 4.2.8 Comparison of Geopolymers with Zeolites -- 4.2.8.1 Synthesis Conditions -- 4.2.8.2 Crystallinity -- 4.2.8.3 Surface Area and Porosity -- 4.2.8.4 Cation Exchange Capacity -- 4.2.8.5 Selectivity for Metal Ions -- 4.2.8.6 Stability in Acidic Solutions -- 4.2.8.7 Thermal Stability -- 4.2.8.8 Mechanical Strength -- 4.2.8.9 Regeneration -- 4.2.9 Stabilization/Solidification/Encapsulation of Ion Exchangers in Geopolymers -- 4.3 Concluding Remarks -- References -- 5 Microwave-Assisted Hydrothermal Synthesis of Agglomerated Spherical Zirconium Phosphate for Removal of Cs+ and Sr2+ Ions from Aqueous System -- Abstract -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Preparation of Agglomerated Spherical Zirconium Phosphate -- 5.2.2 Characterization -- 5.2.3 Ion Exchange Properties -- 5.2.4 Elution Behaviour -- 5.2.5 Distribution Studies -- 5.3 Results and Discussion -- 5.3.1 Fourier-Transform Infrared (FT-IR) Characterization -- 5.3.2 Powder X-ray Diffraction Studies -- 5.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive (EDS) Characterization -- 5.3.4 Zeta and Surface Area Analysis -- 5.3.5 Ion Exchange Characteristics -- 5.3.6 Mechanism of Sr2+ Interaction with Zirconium Phosphate -- 5.4 Conclusion. , Acknowledgements -- References -- 6 Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities -- Abstract -- 6.1 Introduction -- 6.2 Ion Exchange -- 6.2.1 Ion Exchange in MHCF at Work: Potentiometric Ion Sensors -- 6.2.2 An Ion Exchange-Based Approach for the Recovery of Metal Ions: The Case of Cesium and Thallium -- 6.2.3 Electrochemically Driven Ion Exchange -- 6.2.4 Reversible Ion Insertion in Battery Systems -- 6.3 Conclusion -- References -- 7 Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals -- Abstract -- 7.1 Introduction -- 7.2 Agro-Based Biosorbents for Heavy Metal Removal -- 7.3 Biopolymers -- 7.3.1 Functional Groups -- 7.3.2 Cellulose -- 7.3.3 Chitosan -- 7.3.4 Nanofiber Membranes and Packed-Bed Adsorbers -- 7.4 Composite Ion Exchangers -- 7.5 Conclusion and Future Outlook -- References -- 8 Rare Earth Elements-Separation Methods Yesterday and Today -- Abstract -- 8.1 Introduction -- 8.2 Rare Earth Elements -- 8.2.1 General Characteristics -- 8.2.2 The Occurrence of Rare Earth Elements -- 8.2.3 Physicochemical Properties of Rare Earth Elements -- 8.2.4 Application of Rare Earth Metals -- 8.2.5 Production and Consumption of Rare Earth Elements in the World -- 8.3 Rare Earth Element Recovery from Nickel-Metal Hydride Batteries -- 8.4 Rare Earth Element Recovery from Permanent Magnets -- 8.5 Separation of High-Purity Rare Earth Elements -- 8.5.1 Separations of Rare Earth Elements of High Purity Using Cation Exchangers -- 8.5.2 Separations of Rare Earth Elements of High Purity Using Anion Exchangers -- 8.5.3 Separations of Rare Earth Elements of High Purity Using Chelating Ion Exchangers -- 8.6 Current Technologies -- 8.7 Conclusions -- References -- 9 Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers -- Abstract -- 9.1 Introduction -- 9.2 Ion-Exchange Materials. , 9.2.1 Organic Materials -- 9.2.2 Inorganic Materials -- 9.2.3 Composite Materials -- 9.2.3.1 Hybrid Materials -- 9.2.3.2 Nanocomposite -- 9.3 Mechanism of Ion-Exchange Process -- 9.4 Conclusion -- Acknowledgements -- References -- 10 Applications of Organic Ion Exchange Resins in Water Treatment -- Abstract -- 10.1 Introduction -- 10.2 Removal of Heavy Metals -- 10.3 Removal of Organics -- 10.3.1 Natural Organic Matter (NOM) -- 10.3.2 Disinfection by-Products (DBPs) -- 10.3.3 Surfactants -- 10.3.4 Pharmaceuticals -- 10.3.5 Dyes -- 10.3.6 Small Organic Matter -- 10.4 Desalination -- 10.5 Boron Removal -- 10.6 Removal of Anions -- 10.7 Removal of Cations -- 10.7.1 Hardness -- 10.7.2 Ammonium -- 10.8 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Sharjah :Bentham Science Publishers,
    Keywords: Electronic books.
    Description / Table of Contents: Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 1 focuses on the bioremediation of heavy metals, pesticides, textile dyes removal, petroleum hydrocarbon, microplastics and plastics. This book is invaluable for researchers and scientists in environmental science, environmental microbiology, and waste management. It also serves as a learning resource for graduate and undergraduate students in environmental science, microbiology, limnology, freshwater ecology, and microbial biotechnology.
    Type of Medium: Online Resource
    Pages: 1 online resource (519 pages)
    Edition: 1st ed.
    ISBN: 9789815123494
    Series Statement: Sustainable Materials Series ; v.2
    Language: English
    Note: Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- List of Contributors -- Microbial Remediation of Heavy Metals -- Removal of Heavy Metals using Microbial Bioremediation -- Deepesh Tiwari1, Athar Hussain2,*, Sunil Kumar Tiwari3, Salman Ahmed4, Mohd. Wajahat Sultan5 and Mohd. Imran Ahamed6 -- INTRODUCTION -- HEAVY METALS: SOURCES AND EFFECTS -- HEAVY METALS OCCURRENCES -- HEAVY METAL REMOVAL STRATEGIES -- Physical Methods -- Chemical Methods -- Biological Methods -- Phytoremediation -- Bioremediation -- Mechanism of Bioremediation -- Bioremediation by Biosorption -- Bioremediation by Bioaccumulation -- Comparison of Biosorption and Bioaccumulation Process -- Biotechnological Intervention in Bioremediation Processes by the Microbial Approach -- The Ability of Microorganisms to Bioremediate Heavy Metals -- Bacteria Remediation Capacity of Heavy Metal -- Fungi Remediation Capacity of Heavy Metal -- Remediation Capacity of Heavy Metal by Algae -- Heavy Metal Removal Using Biofilms -- Plant Approach -- Advantages of Bioremediation -- Disadvantages of Bioremediation -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Heavy Metal in Paper Mill Effluent -- Priti Gupta1,* -- INTRODUCTION -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON UTILITY AND GROWTH -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON HAZARDS -- PAPER MAKING PROCESSES AND WASTEWATER GENERATION -- Debarking -- Pulping -- Mechanical Pulping -- Chemical Pulping -- Bleaching -- Washing -- Stock Preparation and Paper Making Process -- HEAVY METALS AT GLANCE -- Adverse Effect of Heavy Metal Contamination -- Soil -- Microbial Population -- Plants -- Animals -- Humans -- Remediation Technologies for the Treatment of Heavy Metal Contaminated Wastewater Effluent. , BIOREMEDIATION: AN INNOVATIVE AND USEFUL APPROACH -- Industrial by-Products -- Agricultural Wastes -- Phytoremediation Methods and its Types -- Microbial Biosorbents -- MICROBIAL BIOREMEDIATION METHODS -- Biosorption -- How Does Biosorption Works? -- Important Factors Governing Biosorption Mechanism -- Types of Biosorption -- Examples of Efficient Biosorbents -- Advantages -- Biotransformation -- Bioaccumulation -- Bioleaching -- FACTORS AFFECTING MICROBIAL REMEDIATION OF HEAVY METALS -- CHALLENGES -- CONCLUSION AND FUTURE ASPECTS -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Pesticides -- Praveen Kumar Yadav1,2,*, Kamlesh Kumar Nigam3, Shishir Kumar Singh2,4, Ankit Kumar5 and S. Swarupa Tripathy1 -- INTRODUCTION -- Pesticides -- Bioremediation of Pesticides -- Type of Bioremediation -- In-situ Bioremediation -- Ex-situ Bioremediation -- Aerobic Bioremediation -- Anaerobic Bioremediation -- Mycodegradation of Pesticides -- Mycodegradation of Pesticides -- Bacterial Degradation of Pesticides -- Mechanisms Involved in Bioremediation -- Genetic Modification in Bioremediation Tools -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Biosurfactants for Biodégradation -- Telli Alia1,* -- INTRODUCTION -- BIOSURFACTANTS -- Definition and Importance -- Surface Activity -- Critical Micelle Concentration (CMC) -- Hydrophile-lipophile Balance -- Emulsion Stability -- Classification, Properties and Applications of Biosurfactants -- APPLICATION OF BIOSUFACTANT IN BIODEGRADATION -- Biodegradation of Crude Oil and Petroleum Wastes -- Removal and Detoxification of Heavy Metals -- Biodegradation of Pesticides -- Biodegradation of Organic Dyes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES. , Potential Application of Biological Treatment Methods in Textile Dyes Removal -- Rustiana Yuliasni1, Bekti Marlena1, Nanik Indah Setianingsih1, Abudukeremu Kadier2,3,*, Setyo Budi Kurniawan4, Dongsheng Song2,5 and Peng-Cheng Ma2,3 -- INTRODUCTION -- HISTORY AND CLASSIFICATION OF DYES -- History of Textile Dyes -- Classification of Dyes Based on Industrial Application -- Direct Dyes -- Disperse Dyes -- Vat Dyes -- Basic Dyes -- Acid Dyes -- Sulphur Dyes -- Azo Dyes -- Reactive Dyes -- Dyes Classification Based on Chromophores -- ENVIRONMENTAL CONCERN RELATED TO DYES -- DYES REMOVAL TECHNIQUES -- BIODEGRADATION MECHANISMS OF DYES -- Biosorption -- Bioaccumulation -- Biodegradation -- FUTURE PROSPECTS FOR APPLICATION -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Fungal Bioremediation of Pollutants -- Evans C. Egwim1,*, Oluwafemi A. Oyewole2 and Japhet G. Yakubu2 -- INTRODUCTION -- Pollutants and Their Classification -- Petroleum Hydrocarbons -- Heavy Metals -- Chemical Pollutants -- Synthetic Pesticides -- Industrial Dyes -- Pharmaceutical Products -- Effects of Pollutants in the Soil -- Effects of Pollutants in the Aquatic Environment -- Effects of Pollutants in the Air -- Bioremediation -- Bioremediation Techniques -- Biosparging -- Bioventing -- Bioaugmentation -- Biostimulation -- Ex situ -- Solid Phase -- Land Farming -- Composting -- Biopiles -- Slurry Phase -- Fungi -- Mycoremediation -- White Rot Fungi -- Enzyme System of WRF -- Lignin Peroxidase -- Manganese Peroxidase -- Versatile Peroxidase -- Laccase -- Cytochrome P450s Monooxygenase -- Mycoremediation of Pollutants -- Mycoremediation of Petroleum Hydrocarbons -- Mycoremediation of Dyes -- Mycoremediation of Pesticides -- Mycoremediation of Pharmaceutical Products -- Mycoremediation of Heavy Metal -- Advantages of Mycoremediation. , Limitations of Mycoremediation -- Nutrients -- Bioavailability of Pollutants -- Temperature -- Effects of pH -- Relative Humidity -- Toxicity of Pollutants -- Oxygen -- Moisture Content -- Presence of Contaminants -- CONCLUSION AND FUTURE PERSPECTIVE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Antifouling Nano Filtration Membrane -- Sonalee Das1,* and Lakshmi Unnikrishnan1 -- INTRODUCTION -- MEMBRANE FOULING -- Classification of Membrane Fouling -- Mechanism of Membrane Fouling -- Factors Affecting Membrane Fouling -- NANOFILTRATION MEMBRANES -- Mechanism of Action -- Characterization of NF Membranes -- Industrial Applications -- Challenges in NF Membranes -- Membrane Fouling -- Separation Between the Solutes -- Post-treatment of Concentrates -- Chemical Resistance -- Insufficient Rejection in Water Treatment -- Need for Modelling & -- Simulation Tools -- ANTIFOULING NANOFILTRATION (AF-NF) MEMBRANES -- Recent Progress in the Fabrication of Anti-Fouling Nanofiltration (NF) Membranes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Microbes and their Genes involved in Bioremediation of Petroleum Hydrocarbon -- Bhaskarjyoti Gogoi1, Indukalpa Das1, Shamima Begum1, Gargi Dutta1, Rupesh Kumar1 and Debajit Borah1,* -- INTRODUCTION -- TYPES OF BIOREMEDIATION STRATEGIES -- PHYSICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- CHEMICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- BIOLOGICAL METHODS -- EX-SITU BIOREMEDIATION -- In Situ Bioremediation -- Microbial Bioremediation Method -- ROLE OF BIOSURFACTANTS IN PETROLEUM HYDROCARBON DEGRADATION -- ROLE OF MICROBIAL ENZYMES AND RESPONSIBLE GENES IN HYDROCARBON DEGRADATION -- FACTORS AFFECTING BIOREMEDIATION OF PETROLEUM HYDROCARBONS -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST. , ACKNOWLEDGEMENT -- REFERENCES -- Application and Major Challenges of Microbial Bioremediation of Oil Spill in Various Environments -- Rustiana Yuliasni1, Setyo Budi Kurniawan2, Abudukeremu Kadier3,4,*, Siti Rozaimah Sheikh Abdullah2, Peng-Cheng Ma3,4, Bekti Marlena1, Nanik Indah Setianingsih1, Dongsheng Song3,5 and Ali Moertopo Simbolon1 -- INTRODUCTION -- NATURE AND COMPOSITION OF PETROLEUM CRUDE OIL -- BIOREMEDIATION AGENTS -- Bacteria as Bioremediation Agents of Hydrocarbon Contaminated Environment -- Fungal Bioremediation of Hydrocarbon Contaminated Environment -- Algae as Bioremediation Agent of Hydrocarbon Contaminated Environment -- Commercialized Product of Microbial Agents for Hydrocarbon Remediation -- APPLICATION STRATEGIES AND PRACTICES -- In-situ Bioremediation -- Ex-situ Bioremediation -- FACTOR AFFECTING BIOREMEDIATION -- Temperature -- Substances Bioavailability -- Oxygen or Alternate Electron Acceptors -- Nutrients -- MATRICES TO BE REMEDIATED -- Soil Bioremediation -- Water Bioremediation -- Sludge Bioremediation -- CONCLUSION AND FUTURE CHALLENGES -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Bioremediation of Hydrocarbons -- Grace N. Ijoma1, Weiz Nurmahomed1, Tonderayi S. Matambo1, Charles Rashama1 and Joshua Gorimbo1,* -- INTRODUCTION -- Hydrocarbon Pollution Effects on Macrobiota -- Hydrocarbon Pollution Effects on Microbiota -- The Fate of Hydrocarbon Pollution in the Environment -- Weathering, Physical and Chemical Interactions with the Terrestrial Environment -- Weathering, Physical and Chemical Interactions within the Terrestrial Environment -- Reasons for Hydrocarbon Recalcitrance to Biodegradation -- Ecotoxicology: Consortia Stress Responses, Tolerance and Adaptation -- Rate-limiting Nutrients: Changes in Nitrogen Flux -- Changes in Microbial Population Dynamics. , Microbial Consortia Interactions Employed in the Degradation of Hydrocarbons.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Ion exchange chromatography. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (232 pages)
    Edition: 1st ed.
    ISBN: 9783030060824
    DDC: 543.0893
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Separation and Purification of Amino Acids -- 1.1 Introduction -- 1.2 Ion Exchange Chromatography in the Separation of Amino Acids -- 1.3 Ion Exchange Chromatography of Amino Acids -- 1.4 Ion Exchange Resins -- 1.5 Buffer Systems in IEC for Separation of Amino Acids -- 1.5.1 Sodium Citrate Buffer System -- 1.5.2 Lithium Citrate Buffer System -- 1.6 The Relation Between the Concentration of Eluent and Retention Time of Amino Acids -- 1.7 Effect of Temperature on Separation of Amino Acids -- 1.8 Effect of pH on Separation of Amino Acids -- 1.9 Effect of the Flow Rate of the Eluting Buffer on the IEC of Amino Acids -- 1.10 Regeneration of the Ion Exchange Column -- 1.11 Conclusion -- References -- 2 Ion Exchange Chromatography for Enzyme Immobilization -- 2.1 Introduction -- 2.2 Enzyme Immobilization -- 2.2.1 Immobilization Approaches -- 2.3 Ion-Exchange as an Immobilization Tool -- 2.4 Enzyme Immobilization Research and Application by Ion-Exchange in the Laboratory and Industry -- 2.5 Conclusion and Future Prospects -- References -- 3 Determination of Morphine in Urine -- 3.1 Introduction -- 3.1.1 Structural Features of Morphine -- 3.1.2 Physical Properties -- 3.1.3 Various Routes of Morphine Administration -- 3.1.4 Stay Period of Morphine in the Body -- 3.2 What Is Drug Abuse? -- 3.2.1 Fatal Dose of Morphine -- 3.2.2 Statistics Towards Morphine Addiction -- 3.2.3 Adverse Effect of Morphine -- 3.3 Samples Used for Detection of Morphine -- 3.3.1 Sample Collection/Preparation Prior to Detection -- 3.3.2 Extraction and Derivatization -- 3.4 Detection of Morphine in Urine -- 3.4.1 Chromatographic Methods -- 3.4.2 Liquid Chromatography (LC) and High-Performance Liquid Chromatography (HPLC) -- 3.4.3 Thin-Layer Chromatography (TLC) -- 3.4.4 Capillary Electrophoresis (CE) -- 3.4.5 Electrochemical Detection. , 3.4.6 Combination of Molecularly Imprinted Polymer with Chromatography -- 3.4.7 Some Miscellaneous Detection Techniques -- 3.5 Conclusion and Future Scope -- References -- 4 Chromatographic Separation of Amino Acids -- 4.1 Introduction -- 4.1.1 History -- 4.1.2 Classification of Amino Acids -- 4.2 Separation -- 4.2.1 What is Separation? -- 4.2.2 Why Need to Do Separation of Amino Acids? -- 4.2.3 What is Chromatography? -- 4.2.4 Classification of Chromatographic Methods -- 4.2.5 Advantages of Chromatographic Methods Over Other Methods -- 4.3 Separation of Amino Acids by Gas Chromatography (GC) -- 4.4 Liquid Chromatography (LC) -- 4.4.1 Separation of Amino Acids by High-Performance Liquid Chromatography (HPLC) -- 4.4.2 Advantages of Liquid Chromatography Over the Gas Chromatography -- 4.5 Amino Acid Separation by Countercurrent Chromatography (CCC) -- 4.6 Separation of Amino Acids by Thin-Layer Chromatography (TLC) -- 4.6.1 Preparation of Thin Plates -- 4.6.2 Sample Spotting on the Thin-Layer Plate -- 4.6.3 Detection of Amino Acids on the Thin-Layer Plate -- 4.7 Separation of Amino Acids by Capillary Electrophoresis (CE) -- 4.7.1 Various Modes for Capillary Electrophoresis (CE) -- 4.8 Separation of Amino Acids by the Hyphenated Technique -- 4.8.1 List of Hyphenated Techniques -- 4.8.2 Separation of Amino Acids Using GC-MS -- 4.8.3 Separation of Amino Acids by LC-MS -- 4.8.4 Separation of Amino Acids by LC-MS-MS -- 4.8.5 Separation of Amino Acids by CE-MS -- 4.9 Conclusion and Future Scope -- References -- 5 Applications of Ion-Exchange Chromatography in Pharmaceutical Analysis -- 5.1 Introduction -- 5.2 Application of Ion-Exchange Chromatography in Quantitative Analysis -- 5.2.1 Single-Mode Ion-Exchange Chromatography -- 5.2.2 Analysis of Small Molecules (Organic and Inorganic Ions) -- 5.2.3 Mixed-Mode Chromatography. , 5.3 Pretreatment and Separation Prior to Analysis -- 5.3.1 Ionic Solid-Phase Extraction -- 5.3.2 Mixed-Mode Ion-Exchange Solid-Phase Extraction -- 5.3.3 Flow Injection Ion-Exchange Preconcentration -- 5.4 Summary -- References -- 6 Thermodynamic Kinetics and Sorption of Bovine Serum Albumin with Different Clay Materials -- 6.1 Introduction -- 6.2 Experimental -- 6.3 Results and Discussion -- 6.3.1 The Effect of Some Specific Physicochemical Properties BSA onto Adsorption -- 6.3.2 Analyses of FTIR, TGA, and SEM Images -- 6.3.3 Kinetic Analysis -- 6.3.4 Thermodynamic Parameters -- 6.4 Conclusions -- References -- 7 Sorbitol Demineralization by Ion Exchange -- 7.1 Introduction -- 7.2 Industrial Application of Sorbitol -- 7.3 Importance of Demineralization/Deashing of Sorbitol -- 7.4 Role of Ion-Exchange Chromatography -- 7.5 Different Types of Ion Exchangers for Sorbitol Demineralization -- 7.5.1 Cation-Exchange Chromatography -- 7.5.2 Anion-Exchange Chromatography -- 7.6 Conclusion -- References -- 8 Separation and Purification of Nucleotides, Nucleosides, Purine and Pyrimidine Bases by Ion Exchange -- 8.1 Introduction -- 8.2 Ion-Exchange Chromatography -- 8.2.1 Mechanism of Ion Exchange -- 8.2.2 Components of Ion-Exchange Chromatography -- 8.3 Nucleotides -- 8.4 Nucleosides -- 8.5 Purines and Pyrimidines -- 8.6 Column Preparation and Operation -- 8.7 Operation -- 8.8 Impact of Separation Parameters -- 8.9 Separation of Nucleotides -- 8.9.1 Fractionation of Nucleotides -- 8.9.2 Cation-Exchange Resin -- 8.9.3 Anion-Exchange Materials -- 8.10 Separation of Nucleosides -- 8.10.1 Purification of Nucleosides -- 8.10.2 Cation-Exchange Chromatography -- 8.10.3 Anion-Exchange Chromatography -- 8.11 Separation of Purines and Pyrimidines -- 8.11.1 Cation-Exchange Chromatography -- 8.11.2 Anion-Exchange Chromatography. , 8.12 Applications of Ion-Exchange Chromatography -- 8.13 Conclusion -- References -- 9 Separation and Purification of Vitamins: Vitamins B1, B2, B6, C and K1 -- 9.1 Introduction -- 9.2 Significance of Vitamins -- 9.3 Classification of Vitamins -- 9.3.1 Water-Soluble Vitamins -- 9.3.2 Fat-Soluble Vitamins -- 9.4 Sources of Vitamins -- 9.4.1 B Vitamins -- 9.4.2 Vitamin C -- 9.4.3 Vitamin K -- 9.5 Vitamin Deficiency Disorders -- 9.6 B Vitamins -- 9.6.1 Vitamin B1 -- 9.6.2 Vitamin B2 -- 9.6.3 Vitamin B6 -- 9.7 Vitamin C -- 9.8 Vitamin K1 -- 9.9 Separation and Purification of Vitamin -- 9.10 Ion-Exchange Chromatography -- 9.11 Mechanism of Ion-Exchange Chromatography -- 9.12 Separation and Purification of Vitamins B1, B2 and B6 -- 9.13 Separation and Purification of Vitamin C -- 9.14 Ion-Exchange Separation and Purification of Vitamin K1 -- 9.15 Conclusion -- References -- 10 Colour Removal from Sugar Syrups -- 10.1 Colourants in Sugar Solutions -- 10.1.1 Determination of Colour in Sugar and Sugar Juices -- 10.1.2 Colour Substances in Sugar and Sugar Solutions -- 10.1.3 Formation of Beet and Cane Colourants During the Technological Process -- 10.1.4 Removal of Colourants from Beet and Cane Sugar and Sugar Solution -- 10.2 Decolourisation with Ion-Exchange Resins -- 10.2.1 The Terminology Used in Ion-Exchange Technology -- 10.2.2 Types of Ion-Exchange Resins -- 10.2.3 Set-up of Industrial Chromatographic Systems for Colour Removal -- 10.2.4 Comparison of Ion-Exchange Technology with Other Decolourising Techniques -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Inorganic ion exchange materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (264 pages)
    Edition: 1st ed.
    ISBN: 9783030060855
    DDC: 543.0893
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Use of Ion-Exchange Resins in Dehydration Reactions -- 1.1 Introduction -- 1.2 Catalytic Processes of Dehydration -- 1.2.1 Dehydration of Alcohols to Alkenes -- 1.2.2 Dehydration of Alcohols to Ethers -- 1.2.3 Dehydration of Carbohydrates -- 1.2.4 Other Dehydration Processes -- 1.3 Conclusion -- References -- 2 The Application of Ion-Exchange Resins in Hydrogenation Reactions -- 2.1 Introduction -- 2.2 Ion-exchange resin as a catalyst and support in reaction processes -- 2.2.1 Hydrogenation reactions and catalysis -- 2.3 Ion-Exchange Resins as Catalyst and Support for Hydrogenation Reactions -- 2.3.1 Hydrogenation of Unsaturated Hydrocarbon Compounds Using Ion-Exchange Resins -- 2.3.2 Reduction, Removal, and Hydrogenation of Nitrates Using Ion-Exchange Resin -- 2.3.3 Hydrodechlorination Reaction Using Ion-Exchange Resin -- 2.4 Conclusions -- References -- 3 Use of Ion-Exchange Resins in Alkylation Reactions -- 3.1 Introduction -- 3.2 Aspects of Ion-Exchange Resins for the Alkylation Reaction -- 3.3 Alkylation Process Using Ion-Exchange Resins -- 3.3.1 Reactors and Heterogeneous Catalysis -- 3.3.2 Alkylation Process -- 3.3.3 A Process for Continuous Alkylation of Phenol Using Ion-Exchange Resin -- 3.3.4 Process for Alkylating Benzene with Tri- and Tetra-substituted Olefins with a Sulfonic Acid Type Ion-Exchanger Resin -- 3.4 Alkylation of Alkenes with Isoalkanes -- 3.5 The Reaction of Alkylation of Sulfur Compounds with Olefins -- 3.6 Alkylation of Aromatic Compounds -- 3.6.1 The Reaction of Aromatic Compounds with Olefins -- 3.6.2 The Reaction of Aromatic Compounds with Alkyl Halides and Alcohols -- 3.7 Alkylation of Phenol -- 3.8 Alkylation of Furan and Indol Derivatives -- 3.8.1 Indole Alkylation -- 3.8.2 Furan Alkylation -- 3.9 Conclusions -- References. , 4 Ion Exchange Resins Catalysed Esterification for the Production of Value Added Petrochemicals and Oleochemicals -- 4.1 Introduction -- 4.2 Ion Exchange Resin Catalysed Esterification for the Production of Petrochemicals -- 4.2.1 Esterification of Acetic Acid -- 4.2.2 Esterification of Acrylic Acid -- 4.2.3 Esterification of Lactic Acid -- 4.2.4 Esterification of Maleic Acid -- 4.3 Ion Exchange Resin Catalysed Esterification for the Production of Oleochemicals -- 4.3.1 Esterification of Oleic Acid -- 4.4 Esterification of Butyric Acid -- 4.5 Esterification of Palmitic Acid -- 4.6 Esterification of Nanonoic Acid -- 4.7 Esterification of Free Fatty Acid in Plant Oil -- 4.8 Summary and Future Prospects -- References -- 5 Synthesis and Control of Silver Aggregates in Ion-Exchanged Silicate Glass by Thermal Annealing and Gamma Irradiation -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Glass Composition -- 5.2.2 Ion Exchange -- 5.2.3 Gamma Irradiation and Thermal Treatment -- 5.2.4 UV-Vis Optical Absorption Spectrometry -- 5.3 Results and Discussion -- 5.3.1 Effect of Ion Exchange Conditions -- 5.3.2 Effect of Thermal Annealing Conditions -- 5.3.3 Effect of Gamma Irradiation -- 5.3.4 Combined Effects of Gamma Irradiation and Thermal Annealing -- 5.4 Conclusion -- References -- 6 Use of Ion-Exchange Resin in Reactive Separation -- 6.1 Introduction -- 6.2 Use of Ion-Exchange Resin in Reactive Separation -- 6.2.1 Reactive Distillation (RD) -- 6.3 Reactive Chromatography (RC) -- 6.4 Reactive Extraction (RE) -- 6.5 Reactive Absorption (RA) -- 6.6 Conclusion -- References -- 7 Chromatographic Reactive Separations -- 7.1 Introduction -- 7.1.1 Reactive Distillation (RD) -- 7.1.2 Reactive Chromatography (RC) -- 7.1.3 Reactive Extraction (RE) -- 7.1.4 Reactive Membranes (RM) -- 7.1.5 Reactive Crystallization (RCr) -- 7.2 Concluding Remarks -- References. , 8 Ion-Exchange Chromatography in Separation and Purification of Beverages -- 8.1 Introduction -- 8.2 Ion-Exchange Resins -- 8.2.1 Properties of Ion-Exchange Resins Used for Industrial Applications -- 8.2.2 Applications in Drinking Water Treatment -- 8.2.3 Major Ion-Exchange Processes in Water Treatment -- 8.2.4 Applications in Nonalcoholic Beverages -- 8.2.5 Applications in Alcoholic Beverages -- 8.3 Conclusions -- References -- 9 Ion Exchange Resin Technology in Recovery of Precious and Noble Metals -- 9.1 Introduction -- 9.2 Recovery of Metals from Their Pregnant Solutions -- 9.2.1 Gold -- 9.2.2 Recovery and Removal of Silver from Aqueous Industrial Solutions by Ion Exchange Technology -- 9.2.3 Removal of Copper from Industrial Effluents by Ion Exchange Technology -- 9.2.4 Uranium -- 9.2.5 Removal of Iron and Sulfate Ions from Copper Streams by Ion Exchange Technology -- 9.3 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Carbon dioxide. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (216 pages)
    Edition: 1st ed.
    ISBN: 9783030286224
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.40
    DDC: 546.68119999999999
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Conversion of Carbon Dioxide into Liquid Hydrocarbons Using Cobalt-Bearing Catalysts -- 1.1 Introduction -- 1.2 Hydrogenation of CO2 into Hydrocarbons over a Cobalt Catalyst in a Fischer-Tropsch Process -- 1.2.1 Fischer-Tropsch Reactions -- 1.2.2 Bimetallic Cobalt and Iron Catalysts -- 1.2.3 Promoters on Cobalt-Based Catalysts for CO2 Hydrogenation -- 1.2.4 Effect of the Supports and Structure of Cobalt-Based Catalysts -- 1.2.5 Pretreatment of Cobalt Catalysts -- 1.2.6 Effect of Pressure and Ratio of the Feed Gas -- 1.3 Hydrogenation of CO2 over a Cobalt Catalyst in a Solution -- 1.4 CO2 Reforming of CH4 over a Cobalt Catalyst -- 1.5 Electrochemical Reduction of CO2 over a Cobalt Catalyst -- 1.5.1 Electrochemical Reduction of CO2 -- 1.5.2 Cobalt-Based Electrocatalysts for Reduction of CO2 into Formate -- 1.5.3 Cobalt Phthalocyanines and Cobalt Porphyrins for CO2 Reduction -- 1.6 Photocatalytic Reduction of CO2 over a Cobalt Catalyst -- 1.7 Conclusions -- References -- Chapter 2: Conversion of Carbon Dioxide Using Lead/Composite/Oxide Electrode into Formate/Formic Acid -- 2.1 Introduction -- 2.2 Electrode Composition -- 2.2.1 Lead Metal -- 2.2.2 Lead-Based Composites -- 2.2.3 Lead Oxides -- 2.3 Catalytic Mechanism -- 2.4 Reactor and Electrode Type -- 2.4.1 Traditional Electrode -- 2.4.2 Gas Diffusion Electrodes -- 2.4.3 Other Types -- 2.5 Effects of Operation Conditions -- 2.6 Conclusions -- References -- Chapter 3: Thermochemical Conversion of Carbon Dioxide to Carbon Monoxide by Reverse Water-Gas Shift Reaction over the Ceria-B... -- 3.1 Introduction -- 3.2 Reverse Water-Gas Shift Thermodynamic Considerations -- 3.3 Reverse Water-Gas Shift Catalyst -- 3.3.1 Supported Metal Catalysts -- 3.3.2 Reverse Water-Gas Shift Promoters. , 3.4 Chemistry of Cerium During Reduction and Reverse Water-Gas Shift -- 3.4.1 CeO2 Reduction Thermodynamics -- 3.4.2 In Situ CeO2 Reduction -- 3.4.3 CeO2 Reduction Mechanism -- 3.5 Conclusion -- References -- Chapter 4: Photocatalytic Systems for Carbon Dioxide Conversion to Hydrocarbons -- 4.1 Introduction -- 4.2 Fundamental Aspects for CO2 Photoconversion -- 4.2.1 Background and General Principles -- 4.2.2 Challenges of CO2 Photoconversion -- 4.3 Carbon Dioxide Photoreduction over UV-Light Semiconductors -- 4.3.1 Titanium Dioxide (TiO2) Material -- 4.3.2 TiO2-Based Photocatalyst -- Transition and Noble Elements -- Rare Earth Elements -- 4.4 Carbon Dioxide Photoreduction on Visible Light Materials -- 4.4.1 Metal Oxide Photocatalyst -- 4.4.2 Porous Materials -- 4.4.3 Carbon-Based Materials -- Graphene and Graphene Oxide -- Graphitic Carbon Nitride (g-C3N4) -- References -- Chapter 5: Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal-Organic Frameworks and Non-metal-Organic Framew... -- 5.1 Introduction -- 5.2 Challenges Involved in Methanol Production from Carbon Dioxide Electrocatalytic Reduction -- 5.3 Homogeneous and Heterogeneous Electrocatalysts for Electroreduction of Carbon Dioxide -- 5.3.1 Homogeneous Catalysts for Electroreduction of Carbon Dioxide -- 5.3.2 Heterogeneous Catalysis for Electroreduction of Carbon Dioxide -- 5.4 Kinetics of Electroreduction of Carbon Dioxide into Methanol -- 5.5 Formation of Carbon Dioxide Anion Radical -- 5.6 Formation of Methanoate from the Electroreduction of Carbon Dioxide -- 5.7 Formation of Carbon Monoxide from Electroreduction of Carbon Dioxide -- 5.8 Formation of Methanol from Electroreduction of Carbon Dioxide -- 5.9 Hydrogen Evolution Reaction -- 5.10 Benchmark Non-metal-Organic Framework-Based Catalysts for Carbon Dioxide Reduction. , 5.11 Metal-Organic Frameworks as Catalysts for the Carbon Dioxide Reduction Reaction -- 5.12 Conclusion and Recommendations -- References -- Chapter 6: Photocatalytic Conversion of Carbon Dioxide into Hydrocarbons -- 6.1 Introduction -- 6.2 General Principles of Artificial Photocatalysis -- 6.2.1 Thermodynamic Theory of Carbon Dioxide Photoreduction -- 6.2.2 General Criterion of Carbon Dioxide Photoconversion Systems -- Product Formation Rate -- Selectivity Percentage -- Amount of Carbon Dioxide Converted -- Apparent Quantum Efficiency -- Turnover Number -- 6.3 Photocatalytic Material for Carbon Dioxide Photoreduction -- 6.3.1 Metal Oxide Photocatalyst for Carbon Dioxide Reduction -- 6.3.2 Layered Double Hydroxide -- 6.3.3 Metal Chalcogenides -- 6.3.4 Carbon-Based Two-Dimensional Layered Material -- 6.4 Surface Modification of Photocatalyst for Carbon Dioxide Reduction -- 6.4.1 Metal and Non-metal Doping Semiconductor -- 6.4.2 Surface Sensitization of Semiconductor -- 6.4.3 Hybridization with Another Semiconductor Material -- 6.5 Effect Operating Parameters on Carbon Dioxide Reduction -- 6.5.1 Reaction Medium -- 6.5.2 pH -- 6.5.3 Wavelength and Light Intensity -- 6.5.4 Amount of Catalyst -- 6.5.5 Particle Size -- 6.5.6 Pressure -- 6.5.7 Temperature -- 6.6 Photoreactors for Carbon Dioxide Photoconversion -- 6.6.1 Fluidized Bed Reactor -- 6.6.2 Fixed Bed Reactor -- 6.7 Conclusions -- References -- Chapter 7: Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.1 Introduction -- 7.2 Liquid Phase Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.2.1 Electrocatalysts -- 7.2.2 Electrolytes -- 7.2.3 Electrode Structure -- 7.2.4 Electrochemical Cell Configuration -- 7.2.5 Operation Parameters -- 7.3 Gaseous Phase Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.3.1 Electrocatalysts -- 7.3.2 Electrolytes. , 7.3.3 Electrochemical Cell Configuration -- 7.3.4 Operation Parameters -- 7.4 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Carbon sequestration. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (170 pages)
    Edition: 1st ed.
    ISBN: 9783030292980
    Series Statement: Sustainable Agriculture Reviews Series ; v.37
    DDC: 577.14400000000001
    Language: English
    Note: Intro -- Preface -- Contents -- Chapter 1: Introduction to Carbon Dioxide Capture and Storage -- 1.1 Introduction -- 1.2 Carbon Dioxide -- 1.3 Carbon Dioxide Capture and Storage Technology -- 1.3.1 Capturing and Separation -- 1.3.2 Transport -- 1.3.3 Injection and Storage -- 1.3.3.1 Integrity Issues -- 1.3.4 Monitoring -- 1.4 Technological and Scientific Concerns -- 1.5 Summary -- References -- Chapter 2: Sources of Carbon Dioxide and Environmental Issues -- 2.1 Introduction -- 2.2 Source of Carbon Dioxide -- 2.2.1 Anthropogenic Activities -- 2.2.1.1 Carbon Dioxide Emissions from Fossil Fuels´ Combustion -- 2.2.1.2 Trends in emissions -- 2.2.1.3 Industrial Emissions -- 2.2.1.4 Overpopulation and Carbon Dioxide Emissions -- 2.2.1.5 Agriculture Sector -- 2.2.2 Natural Sources of Carbon Dioxide -- 2.2.2.1 Forest Fires -- 2.2.2.2 Volcanic eruption -- 2.3 Environmental Issues Related to Carbon Dioxide Emissions -- 2.3.1 Cyclones and Hurricanes -- 2.3.2 Droughts -- 2.3.3 Heat Waves -- 2.3.4 Food System and Food Security -- 2.3.5 Glaciers Melting -- 2.4 Conclusion -- References -- Chapter 3: Carbon Capture Utilization and Storage Supply Chain: Analysis, Modeling and Optimization -- 3.1 Introduction -- 3.2 Status of Carbon Capture Utilization and Storage Supply Chain -- 3.3 Carbon Capture Utilization and Storage Technology Overview -- 3.3.1 CO2 Capture Options -- 3.3.1.1 Absorption Technology -- 3.3.1.2 Adsorption Technology -- 3.3.1.3 Membrane Technology -- 3.3.1.4 Chemical Looping Combustion -- 3.3.1.5 Cryogenic Technology -- 3.3.1.6 Hybrid Technology -- 3.3.2 CO2 Utilization Options -- 3.3.3 CO2 Storage Options -- 3.4 Design and Optimization of Carbon Capture Utilization and Storage Supply Chain -- 3.4.1 Methodology for the Design -- 3.4.2 Development of Optimization Tool -- 3.5 Cost Analysis. , 3.6 Literature Work About Carbon Capture Utilization and Storage Supply Chain -- 3.7 Conclusions -- References -- Chapter 4: Natural Carbon Sequestration by Forestry -- 4.1 Introduction -- 4.2 Influence of the Environment and Climate Variables in the Global Carbon Cycle -- 4.2.1 Nitrogen Fertilisation -- 4.2.2 Temperature and Soil Water Availability -- 4.2.3 Radiation -- 4.2.4 Climate Extremes and Disturbance -- 4.3 Forests Global Carbon Sink -- References -- Chapter 5: Carbon Sequestration via Biomineralization: Processes, Applications and Future Directions -- 5.1 Introduction -- 5.2 Biomineralization Processes and Mechanisms -- 5.2.1 Microbially-Mediated Biomineralization -- 5.2.2 Plant-Mediated Biomineralization -- 5.3 Carbon Dioxide Sequestration -- 5.3.1 Microbially-Mediated Biomineralization -- 5.3.2 Plant-Mediated Biomineralization -- 5.3.2.1 The Case of the Iroko Tree -- 5.3.2.2 The Case of Australian Acacia Species -- 5.3.2.3 Carbon Occlusion in Biominerals -- 5.4 Knowledge Gaps and Future Directions -- 5.5 Summary and Conclusions -- References -- Chapter 6: A Review of Coupled Geo-Chemo-Mechanical Impacts of CO2-Shale Interaction on Enhanced Shale Gas Recovery -- 6.1 Introduction -- 6.2 Properties of Shale and CO2 -- 6.2.1 Shale -- 6.2.2 CO2/Supercritical CO2 -- 6.3 Interaction of CO2 and Shale -- 6.3.1 Interaction of Shale with Anhydrous CO2 -- 6.3.2 CO2-Water-Rock Geochemical Reactions in Shale -- 6.3.3 CO2 Adsorption Induced Swelling in Shale -- 6.4 Effect of CO2-Shale Interaction on Rock Properties -- 6.4.1 Porosity and Permeability -- 6.4.2 Mechanical Properties -- 6.4.3 Adsorption Properties -- 6.5 Effect of CO2-Shale Interaction on Groundwater Quality -- 6.6 Conclusions -- References -- Chapter 7: Plantation Methods and Restoration Techniques for Enhanced Blue Carbon Sequestration by Mangroves -- 7.1 Introduction. , 7.2 Blue Carbon Sequestration -- 7.2.1 Carbon Balance in a Mangrove Ecosystem -- 7.3 Plantation Techniques for Mangroves -- 7.3.1 Establishment of Mangrove Nursery -- 7.3.2 Transplantation of Nursery Grown Seedlings -- 7.3.3 Direct Seeding Method -- 7.3.4 Drain and Trench Method -- 7.3.5 Fish Bone Canal System -- 7.4 Post Plantation Management -- 7.5 Community Participation in Mangrove Plantation -- 7.6 Conclusion -- References -- Chapter 8: Biowaste for Carbon Sequestration -- 8.1 Introduction -- 8.2 Sources of Biowastes -- 8.3 Environmental Impact of Biowastes -- 8.4 Application of Biowastes for Carbon Sequestration -- 8.4.1 Composting Technology -- 8.4.2 As a Fertilizer/Organic Farming -- 8.4.3 Energy -- 8.4.4 Biochar Technology -- 8.5 Future Research Directions -- 8.6 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (474 pages)
    Edition: 1st ed.
    ISBN: 9783319527390
    DDC: 541.372
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- 1 Organic-Inorganic Membranes Impregnated with Ionic Liquid -- Abstract -- 1 Introduction -- 2 Ionic Liquids: General Properties and Applications -- 3 Ionic Liquids as Electrolytes in Fuel Cells -- 4 Ionic Liquid Polymer Membranes for Fuel Cells -- 4.1 Ionic Liquid/Polymer Membranes -- 4.2 Polymerized Ionic Liquid Membranes -- 4.3 IL Gel and Composite Polymer Membranes -- 5 Conclusions -- Acknowledgements -- References -- 2 Organic/TiO2 Nanocomposite Membranes: Recent Developments -- Abstract -- 1 Introduction -- 2 TiO2-Polymer Electrolyte Membranes (PEMs) -- 2.1 Perfluorinated Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes (PEMs) -- 2.2 Acid-Base Polymer Complex-Based Organic-Inorganic Nanocomposite PEMs -- 2.3 TiO2-Modified Polytetrafluoroethylene Membranes -- 2.4 Poly(ether ether ketone)-Based Nanocomposite PEMs -- 2.5 PANI Based Membranes -- 2.6 PES Based Membranes -- 2.7 Polysulfone-Based Membranes -- 2.8 TiO2 Solar Cells -- 2.9 Carbon Materials and Metal-Carbon Nanotube (CNTs)-TiO2 Composites -- 2.9.1 Carbon-TiO2 Composites -- 2.9.2 Graphene (GN)-TiO2 Composites -- 3 Conclusions -- Acknowledgements -- References -- 3 Organic/Silica Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Silica Nanoparticle-Based Membranes -- 3 Conclusion -- References -- 4 Organic/Zeolites Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Basic Concepts About Zeolites -- 3 Polymer-Zeolite Composite Membranes: The Role of the Zeolite -- 3.1 Influence of Si/Al Ratio -- 3.2 Proton Mobility in Zeolites -- 3.3 Internal and External Surface Area -- 3.4 Configurational Diffusion -- 3.5 Crystallite Size [17, 18] -- 3.6 Functionalization of Zeolite Surface -- 3.7 Selectivity, Proton Conductivity, and Permeability. , 4 Techniques for Producing Organic/Zeolite Nanocomposite Membranes -- 5 Synthetic Polymers/Zeolite Nanocomposite Membranes for PEMFCs -- 5.1 Route 1: Zeolite + Organic Monomers -- 5.2 Route 3: Inorganic Precursor + Organic Polymer -- 5.3 Route 4: Zeolite + Organic Polymer -- 6 Natural Polymers/Zeolite Nanocomposite Membranes for PEMFCs -- 7 Conclusions -- Acknowledgements -- References -- 5 Composite Membranes Based on Heteropolyacids and Their Applications in Fuel Cells -- Abstract -- 1 Introduction -- 2 Heteropolyacids Types and Structures -- 3 HPAs and Proton Transport in Fuel Cells -- 4 HPAs in PEM Fuel Cell -- 5 HPAs in High-Temperature and Low-Humidity PEMFC -- 6 HPAs in DMFC -- 7 Concluding Remarks and Future Perspectives -- Acknowledgements -- References -- 6 Organic/Montmorillonite Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Membrane Fabrication Methods -- 2.1 Phase Inversion -- 2.2 Immersion Precipitation -- 2.3 Evaporation-Induced Phase Separation -- 3 Montmorillonite-Based Nanocomposites Membranes -- 4 Conclusion -- References -- 7 Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Methanol Fuel Cells -- Abstract -- 1 Introduction -- 2 Methanol Crossover and Low Proton Conductivity -- 3 Composite SPEEK -- 4 SPEEK-Clay Nanocomposite as PEM for DMFC -- 5 Morphology Types and the Importance of Exfoliated Surface Structure on DMFC Performance -- 6 Preparation of Exfoliated Nanocomposite Membranes -- 7 Electrospinning as a Membrane Morphological Modification Technique -- 8 Electrospun Polymer-Based Nanofiber Membranes for DMFC Application -- 9 Electrospinning Parameters -- 10 Future Directions and Conclusion -- References -- 8 A Basic Overview of Fuel Cells: Thermodynamics and Cell Efficiency -- Abstract -- 1 What Is a Fuel Cell? -- 2 Fuel Cell Structure and Classification -- 3 Fuel Cell Construction. , 4 PEMFC Types, Electrode Reactions, and Cell Potential -- 4.1 H2/O2 PEMFC -- 4.2 Direct Methanol Fuel Cells (DMFC) -- 4.3 Direct Ethanol Fuel Cells (DEFC) -- 4.4 Direct Formic Acid Fuel Cells (DFAFC) -- 4.5 Direct Borohydride Fuel Cells (DBFCs) -- 5 Fuel Cell Thermodynamics -- 5.1 Effect of Temperature -- 5.2 Effect of Pressure -- 5.3 Effect of Concentration of Reactant -- 6 Fuel Cell Efficiency -- 6.1 Losses in Actual System -- 6.2 Activation Overpotential -- 6.3 Ohmic Polarization Losses -- 6.4 Mass Transport Overpotential -- 7 Conclusion -- References -- 9 Organic/Inorganic and Sulfated Zirconia Nanocomposite Membranes for Proton-Exchange Membrane Fuel Cells -- Abstract -- 1 Introduction -- 1.1 Proton-Exchange Membranes (PEMs) -- 2 Organic/Inorganic Hybrid Membranes -- 3 Organic-Sulfated Metal Oxide Hybrid Membrane -- 4 Sulfated Zirconia Nanocomposite Membranes -- 5 Conclusion and Future Prospects -- Acknowledgements -- References -- 10 Electrochemical Promotional Role of Under-Rib Convection-Based Flow-Field in Polymer Electrolyte Membrane Fuel Cells -- Abstract -- 1 Introduction -- 2 General Description of Performance Improvements in PEMFCs -- 2.1 Proton Exchange Membrane -- 2.2 Electrode and Catalyst -- 2.3 Gas Diffusion Layer -- 2.4 Membrane Electrode Assembly -- 2.5 Bipolar Plate -- 2.6 Single Cell and Stack -- 2.6.1 Water and Heat Management -- 2.6.2 Fuel Crossover, Oxidation, and CO Poisoning -- 2.6.3 Scale-up and Long-Term Experiments -- 3 Structured Techniques for Flow-Field Optimization -- 3.1 Experimental Approaches to Flow-Field Optimization -- 3.1.1 Current Density Measurement -- 3.1.2 Flow Visualization -- 3.1.3 Polarization Curve Evaluation -- 3.2 Modeling Approaches to Flow Optimization -- 3.2.1 Computational Fluid Dynamic Modeling -- 3.2.2 Two-Phase Modeling for Water Management -- 3.2.3 Complex Flow-field Interaction Modeling. , 3.3 Validation of Experimental and Numerical Results -- 4 New Flow-field Optimization Approaches Utilizing Under-Rib Convection -- 4.1 Homogeneous Distribution of the Reactants -- 4.2 Uniformity of Temperature and Current Density Distributions -- 4.3 Facilitation of Liquid Water Discharge -- 4.4 Reduction in Pressure Drop -- 4.5 Improvement in Output Power -- 5 Summary -- References -- 11 Methods for the Preparation of Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells -- Abstract -- 1 Introduction -- 2 Methods for Preparation of Nanocomposite Polymer Electrolyte Membranes -- 2.1 Blending of Nanoparticles in Polymer Matrix -- 2.1.1 Phase Inversion Method for Preparation of PEMs -- 2.1.2 Solution Casting Method -- 2.1.3 Hot Press -- 2.2 Doping or Infiltration and Precipitation of Nanoparticles and Precursors -- 2.3 Self-assembly of Nanoparticles -- 2.4 Non-hydrolytic Sol-Gel (NHSG) Method -- 2.5 Layer-by-Layer Fabrication Method -- 2.6 Nonequilibrium Impregnation Reduction -- 2.7 Surface Patterning Method -- 3 Future Directions and Conclusion -- References -- 12 An Overview of Chemical and Mechanical Stabilities of Polymer Electrolytes Membrane -- Abstract -- 1 Introduction -- 2 Durability of Polymer Electrolyte Membrane (PEM) -- 3 Proton Conductivity of PEM -- 4 Chemical Stabilities and Degradation of PEM -- 5 Mechanical Stability and Degradation of PEM -- 6 Conclusion -- Acknowledgements -- References -- 13 Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Fuel Cells -- Abstract -- 1 Introduction -- 2 Electrospinning Process -- 2.1 Electrospun Fibers -- 2.1.1 Poly(vinylidene fluoride) (PVDF) -- 2.1.2 Poly(vinyl alcohol) (PVA) -- 2.1.3 Poly(phenylene oxide) (PPO) -- 2.1.4 Poly(arylene ether)s -- 2.1.5 Poly(imide)s -- 2.1.6 Poly(benzimidazole) (PBI) -- 2.2 Crosslinking of Electrospun Fibers. , 2.3 Interface Bonding -- 3 Reducing Methanol Crossover -- 4 Improving Proton Conductivity -- 4.1 Electrospinning of Nafion -- 4.2 Aligned Nanofibers -- 5 Other Applications of Electrospinning in Fuel Cells -- 6 Conclusion -- References -- 14 Fabrication Techniques for the Polymer Electrolyte Membranes for Fuel Cells -- Abstract -- 1 Introduction -- 2 Recent Developments of PEM-Based on Organic-Inorganic Nanocomposites -- 3 Fabrication Techniques for the Preparation of PEM -- 3.1 Different Polymerization Routes -- 3.2 Plasma Methods -- 3.3 Sol-Gel Method -- 3.4 Ultrasonic Coating Technique -- 3.5 Phase Inversion Method -- 3.6 In Situ Reduction -- 3.7 Catalyst-Coated Membrane by Screen Printing Method -- 3.8 Solution Casting Method -- 3.9 Other Methods -- 4 Summary -- Acknowledgements -- References -- 15 Chitosan-Based Polymer Electrolyte Membranes for Fuel Cell Applications -- Abstract -- 1 Introduction -- 2 Chitosan: An Overview -- 3 Characterization of the Polymer Membrane and Their Desired Properties -- 4 Chitosan Based Membranes for Polymer Electrolyte -- 4.1 Chitosan Blend Polymer Electrolyte -- 4.2 Chitosan Cross-Linked Polymer Electrolyte -- 4.3 Chitosan Polymer Composite Based Polymer Electrode -- 5 Chitosan for Fuel Cell -- 6 Chitosan for Biofuel Cell -- 6.1 Microbial Biofuel Cell -- 6.2 Enzymatic Biofuel Cell -- 7 Conclusions -- Acknowledgements -- References -- 16 Fuel Cells: Construction, Design, and Materials -- Abstract -- 1 Introduction -- 2 Different Types of Fuel Cells -- 3 Construction and Design of Different FC -- 3.1 PEMFC -- 3.2 DMFC -- 3.3 AEMFC -- 3.4 PAFC -- 3.5 SOFC -- 3.6 MCFC -- 4 Catalysts for Different FCs -- 5 Materials and Methods for Preparation of PEM for Fuel Cells -- 6 Characterizations and Characteristic Properties of PEM for Different FC -- 7 Summary -- References. , 17 Proton Conducting Polymer Electrolytes for Fuel Cells via Electrospinning Technique.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...