GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Earth sciences ; Renewable energy sources ; Alternate energy sources ; Green energy industries ; Earth Sciences ; Earth sciences ; Renewable energy sources ; Alternate energy sources ; Green energy industries ; Renewable energy resources ; Economic geology ; Geobiology ; Renewable energy resources ; Economic geology ; Geobiology ; Force and energy. ; Materials science. ; Welt ; Rohstoffversorgung ; Natürliche Ressourcen ; Erneuerbare Energien ; Energiewirtschaft ; Energieversorgung ; Rohstoff ; Rohstoffbedarf ; Rohstoffverbrauch ; Energiewende ; Energieversorgung ; Rohstoffbedarf ; Wertstoff ; Strategischer Rohstoff ; Seltenerdmetall ; Erneuerbare Energien ; Kritischer Rohstoff ; Mineralischer Rohstoff
    Description / Table of Contents: This is the first book that analyses the future raw materials supply from the demand side of a society that chiefly relies on renewable energies, which is of great significance for us all. It addresses primary and secondary resources and substitution, not only from technical but also socioeconomic and ethical points of view. The “Energiewende” (Energy Transition) will change our consumption of natural resources significantly. When in future our energy requirements will be covered mostly by wind, solar power and biomass, we will need less coal, oil and natural gas. However, the consumption of minerals, especially metallic resources, will increase to build wind generators, solar panels or energy storage facilities. Besides e.g. copper, nickel or cobalt, rare earth elements and other high-tech elements will be increasingly used. With regard to primary metals, Germany is 100 % import dependent; only secondary material is produced within Germany. Though sufficient geological primary resources exist worldwide, their availability on the market is crucial. The future supply of the market is dependent on the development of prices, the transparency of the market and the question of social and ethical standards in the raw materials industry, as well as the social license to operate, which especially applies to mining. The book offers a valuable resource for everyone interested in the future raw material supply of our way of life, which will involve more and more renewable energies
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXX, 225 p. 53 illus. in color, online resource)
    ISBN: 9783319912295
    Series Statement: SpringerLink
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-20
    Description: The anaerobic oxidation of methane (AOM) with sulphate, an area currently generating great interest in microbiology, is accomplished by consortia of methanotrophic archaea (ANME) and sulphate-reducing bacteria1, 2. The enzyme activating methane in methanotrophic archaea has tentatively been identified as a homologue of methyl-coenzyme M reductase (MCR) that catalyses the methane-forming step in methanogenic archaea3, 4. Here we report an X-ray structure of the 280 kDa heterohexameric ANME-1 MCR complex. It was crystallized uniquely from a protein ensemble purified from consortia of microorganisms collected with a submersible from a Black Sea mat catalysing AOM with sulphate4. Crystals grown from the heterogeneous sample diffract to 2.1 Å resolution and consist of a single ANME-1 MCR population, demonstrating the strong selective power of crystallization. The structure revealed ANME-1 MCR in complex with coenzyme M and coenzyme B, indicating the same substrates for MCR from methanotrophic and methanogenic archaea. Differences between the highly similar structures of ANME-1 MCR and methanogenic MCR include a F430 modification, a cysteine-rich patch and an altered post-translational amino acid modification pattern, which may tune the enzymes for their functions in different biological contexts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-07
    Description: Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria1, 2, 3, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme4, 5. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent Vmax (maximum rate) and Km (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate6, 7, 8. This result supports the hypothesis of ‘reverse methanogenesis’4, 9 and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C–H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C–H activation, currently an area of great interest in chemistry10, 11, 12, 13.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 440 (2006), S. 878-879 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Methane is not only a fossil fuel but also a key player in the carbon cycle. About 1% of the carbon dioxide annually fixed by photosynthesis is converted back to carbon dioxide by microorganisms via methane, which amounts to 1 billion tonnes of methane formed and consumed per year. Moreover, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...