GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electronic books.  (10)
  • Electrochemistry  (1)
  • Milton :Taylor & Francis Group,  (4)
  • Dordrecht :Springer Netherlands,  (3)
  • Sharjah :Bentham Science Publishers,  (2)
  • Cham : Springer  (1)
  • Hauppauge :Nova Science Publishers, Incorporated,  (1)
  • Singapore : Springer Singapore
  • 1
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands,
    Schlagwort(e): Chromatographic analysis. ; Chemistry, Analytic -- Technique. ; Sustainable development. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book examines counter-current, ion size exclusion, supercritical fluids, high-performance thin layers, and gas and size exclusion chromatographic techniques used to separate and purify organic and inorganic analytes. Includes green prep methods and more.
    Materialart: Online-Ressource
    Seiten: 1 online resource (220 pages)
    Ausgabe: 1st ed.
    ISBN: 9789400777354
    DDC: 543.8
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- Chapter-1 -- Saving Solvents in Chromatographic Purifications: The Counter-Current Chromatography Technique -- 1.1 Introduction -- 1.2 CCC Theory -- 1.2.1 High Loadability -- 1.2.2 Scale up Capability -- 1.3 Instrumentation -- 1.3.1 Hydrostatic and Hydrodynamic Instruments -- 1.3.2 Liquid Systems -- 1.4 Counter Current Chromatography, a Green Process -- 1.4.1 Saving Solvents -- 1.4.2 Improving Process Parameters -- 1.4.3 Injecting Crude Samples -- 1.4.4 Greener Solvents -- 1.5 Counter Current Chromatography, a Tool for Green Chemistry Development -- 1.5.1 Natural Products -- 1.5.2 Solute Partition Coefficient Determination -- 1.6 Conclusion -- References -- Chapter-2 -- Ion Size Exclusion Chromatohtaphy on Hypercrosslinked Polystyrene Sorbents as a Green Technology of Separating Mineral Elecyrolites -- 2.1 Introduction -- 2.2 Nanoporous Hypercrosslinked Polystyrene Sorbents -- 2.3 Brief Description of Chromatographic Experiments -- 2.4 Dimensions of Hydrated Ions -- 2.5 Separation of Electrolytes on Nanoporous Hypercrosslinked Sorbents -- 2.6 Basic Features of Size Exclusion Chromatography -- 2.7 Conception of "Ideal Separation Process" -- 2.8 Selectivity of Electrolyte Separation Process -- 2.9 Influence of the Electrolyte Concentration on the Selectivity of Separat -- 2.10 "Acid Retardation", "Base Retardation" and "Salt Retardation" Phenomena -- 2.11 Other Convincing Proofs of Separating Electrolytes via Exclusion Mechanism -- 2.12 Do we Really Need Sorbent Functional Groups to Separate Electrolytes? -- 2.13 Productivity of the Ion Size Exclusion Process -- 2.14 Ion Size Exclusion-Green Technology -- 2.15 Conclusion -- References -- Chapter-3 -- Supercritical Fluid Chromatography: A Green Approach for Separation and Purification of Organic and Inorganic Analytes. , 3.1 Introduction to Green Chemistry and Supercritical Fluid Chromatography -- 3.2 Super Critical Fluids -- 3.2.1 Supercritical Fluid Extraction (SFE) -- 3.3 Supercritical Fluid Chromatography (SFC): An Overview -- 3.3.1 History of Development of Supercritical Fluid Chromatography -- 3.3.2 Instrumentation -- 3.3.2.1 Advantages and Disadvantages of Supercritical Fluid Chromatography -- 3.3.3 Properties of SFC compared to GC and HPLC -- 3.4 Industrial Applications of SCFs and SFCs -- 3.5 Conclusion -- References -- Chapter-4 -- High Performance Thin-Layer Chromatography -- 4.1 Introduction -- 4.2 High Performance Thin-Layer Chromatography -- 4.3 Sample Preparation in HPTLC -- 4.4 Green Separation Modalities in HPTLC -- 4.4.1 "Three R" Philosophy-Replacement of Toxic Solvents with Environmental Friendly Mobi -- 4.4.1.1 Reversed-Phase Chromatography -- 4.4.1.2 Hydrophilic Interaction Chromatography (HILIC) in HPTLC -- 4.4.1.3 Salting-Out Chromatography in HPTLC -- 4.5 Conclusion -- References -- Chapter-5 -- Green Techniques in Gas Chromatography -- 5.1 Introduction -- 5.2 Sample Preparation -- 5.2.1 Direct Methods Without Sample Preparation -- 5.2.2 Solventless Sample Preparation Techniques -- 5.2.2.1 Solid Phase Extraction -- 5.2.2.2 Vapor-Phase Extraction -- 5.2.2.3 Thermal Desorption (TD)/Thermal Extraction (TE) -- 5.2.2.4 Membrane Extraction -- 5.2.3 Sample Preparation Using Environmentally Friendly Solvents -- 5.2.3.1 Supercritical Fluid Extraction (SFE) -- 5.2.3.2 Subcritical Water Extraction (SWE) -- 5.2.3.3 Ionic Liquids (ILs) -- 5.2.3.4 Cloud-Point Extraction -- 5.2.4 Assisted Solvent Extraction -- 5.3 Column Considerations for Green Gas Chromatography -- 5.4 Carrier Gas Considerations for Green Gas Chromatography -- 5.5 Coupling GC with Other Analytical Tools -- 5.6 On-Site Analysis. , 5.7 Conclusion -- References -- Chapter-6 -- Preparation and Purification of Garlic-Derived Organosulfur Compound Allicin by Green Methodologies -- 6.1 Introduction -- 6.2 Green RP-HPLC Purification of the Allicin -- 6.3 Characterization of the Allicin by Green Methodologies -- 6.4 Allicin in Different Garlic Extract by Green RP-HPLC -- 6.5 Allicin Green Chemical Synthesis -- 6.6 Stability of Allicin -- 6.7 Conclusions -- References -- Chapter-7 -- Green Sample Preparation Focusing on Organic Analytes in Complex Matrices -- 7.1 Introduction -- 7.1.1 Trends in Green Analytical Chemistry -- 7.1.2 Green Techniques for Sample Preparation -- 7.1.2.1 Reduction and Solvent Replacement -- Supercritical Fluid Extraction -- Membranes -- 7.1.2.2 Solvent Elimination -- Solid Phase Extraction (SPE) -- Matrix Solid-Phase Dispersion (MSPD) -- Sorptive Extraction Techniques -- Solid Phase Microextraction (SPME) -- Stir-Bar Sorptive Extraction -- 7.2 Conclusions -- References -- Chapter-8 -- Studies Regarding the Optimization of the Solvent Consumption in the Determination of Organochlor -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results -- 8.4 Discussions -- 8.4.1 TRM1 -- 8.4.2 TRM2 -- 8.5 Conclusions -- References -- Chapter-9 -- Size Exclusion Chromatography a Useful Technique For Speciation Analysis of Polydimethylsiloxanes -- 9.1 Introduction to SEC -- 9.2 SEC Retention Mechanisms -- 9.2.1 Ideal Size Exclusion Mechanism -- 9.2.2 Non-Ideal Size Exclusion Mechanism -- 9.3 The Stationary Phase in SEC -- 9.4 The Mobile Phase in SEC -- 9.5 Analytical Problems -- 9.6 Methods for Column Calibration -- 9.7 Applications of SEC Biomedical and Pharmaceutical -- 9.7.1 SEC as a Useful Technique for Linear Polydimethylsiloxanes Speciation Analysis. , 9.8 Methodology for Linear Polydimethylsiloxanes Speciation Analysis -- 9.8.1 Mobile Phase Selection -- 9.8.2 Stationary Phase Selection -- 9.8.3 Column Conditions -- 9.8.4 Column Calibration -- 9.8.5 Separation of Polydimethylsiloxanes -- 9.9 Conclusions -- References -- Erratum -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Sharjah :Bentham Science Publishers,
    Schlagwort(e): Electronic books.
    Beschreibung / Inhaltsverzeichnis: Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 1 focuses on the bioremediation of heavy metals, pesticides, textile dyes removal, petroleum hydrocarbon, microplastics and plastics. This book is invaluable for researchers and scientists in environmental science, environmental microbiology, and waste management. It also serves as a learning resource for graduate and undergraduate students in environmental science, microbiology, limnology, freshwater ecology, and microbial biotechnology.
    Materialart: Online-Ressource
    Seiten: 1 online resource (519 pages)
    Ausgabe: 1st ed.
    ISBN: 9789815123494
    Serie: Sustainable Materials Series ; v.2
    Sprache: Englisch
    Anmerkung: Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- List of Contributors -- Microbial Remediation of Heavy Metals -- Removal of Heavy Metals using Microbial Bioremediation -- Deepesh Tiwari1, Athar Hussain2,*, Sunil Kumar Tiwari3, Salman Ahmed4, Mohd. Wajahat Sultan5 and Mohd. Imran Ahamed6 -- INTRODUCTION -- HEAVY METALS: SOURCES AND EFFECTS -- HEAVY METALS OCCURRENCES -- HEAVY METAL REMOVAL STRATEGIES -- Physical Methods -- Chemical Methods -- Biological Methods -- Phytoremediation -- Bioremediation -- Mechanism of Bioremediation -- Bioremediation by Biosorption -- Bioremediation by Bioaccumulation -- Comparison of Biosorption and Bioaccumulation Process -- Biotechnological Intervention in Bioremediation Processes by the Microbial Approach -- The Ability of Microorganisms to Bioremediate Heavy Metals -- Bacteria Remediation Capacity of Heavy Metal -- Fungi Remediation Capacity of Heavy Metal -- Remediation Capacity of Heavy Metal by Algae -- Heavy Metal Removal Using Biofilms -- Plant Approach -- Advantages of Bioremediation -- Disadvantages of Bioremediation -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Heavy Metal in Paper Mill Effluent -- Priti Gupta1,* -- INTRODUCTION -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON UTILITY AND GROWTH -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON HAZARDS -- PAPER MAKING PROCESSES AND WASTEWATER GENERATION -- Debarking -- Pulping -- Mechanical Pulping -- Chemical Pulping -- Bleaching -- Washing -- Stock Preparation and Paper Making Process -- HEAVY METALS AT GLANCE -- Adverse Effect of Heavy Metal Contamination -- Soil -- Microbial Population -- Plants -- Animals -- Humans -- Remediation Technologies for the Treatment of Heavy Metal Contaminated Wastewater Effluent. , BIOREMEDIATION: AN INNOVATIVE AND USEFUL APPROACH -- Industrial by-Products -- Agricultural Wastes -- Phytoremediation Methods and its Types -- Microbial Biosorbents -- MICROBIAL BIOREMEDIATION METHODS -- Biosorption -- How Does Biosorption Works? -- Important Factors Governing Biosorption Mechanism -- Types of Biosorption -- Examples of Efficient Biosorbents -- Advantages -- Biotransformation -- Bioaccumulation -- Bioleaching -- FACTORS AFFECTING MICROBIAL REMEDIATION OF HEAVY METALS -- CHALLENGES -- CONCLUSION AND FUTURE ASPECTS -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Pesticides -- Praveen Kumar Yadav1,2,*, Kamlesh Kumar Nigam3, Shishir Kumar Singh2,4, Ankit Kumar5 and S. Swarupa Tripathy1 -- INTRODUCTION -- Pesticides -- Bioremediation of Pesticides -- Type of Bioremediation -- In-situ Bioremediation -- Ex-situ Bioremediation -- Aerobic Bioremediation -- Anaerobic Bioremediation -- Mycodegradation of Pesticides -- Mycodegradation of Pesticides -- Bacterial Degradation of Pesticides -- Mechanisms Involved in Bioremediation -- Genetic Modification in Bioremediation Tools -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Biosurfactants for Biodégradation -- Telli Alia1,* -- INTRODUCTION -- BIOSURFACTANTS -- Definition and Importance -- Surface Activity -- Critical Micelle Concentration (CMC) -- Hydrophile-lipophile Balance -- Emulsion Stability -- Classification, Properties and Applications of Biosurfactants -- APPLICATION OF BIOSUFACTANT IN BIODEGRADATION -- Biodegradation of Crude Oil and Petroleum Wastes -- Removal and Detoxification of Heavy Metals -- Biodegradation of Pesticides -- Biodegradation of Organic Dyes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES. , Potential Application of Biological Treatment Methods in Textile Dyes Removal -- Rustiana Yuliasni1, Bekti Marlena1, Nanik Indah Setianingsih1, Abudukeremu Kadier2,3,*, Setyo Budi Kurniawan4, Dongsheng Song2,5 and Peng-Cheng Ma2,3 -- INTRODUCTION -- HISTORY AND CLASSIFICATION OF DYES -- History of Textile Dyes -- Classification of Dyes Based on Industrial Application -- Direct Dyes -- Disperse Dyes -- Vat Dyes -- Basic Dyes -- Acid Dyes -- Sulphur Dyes -- Azo Dyes -- Reactive Dyes -- Dyes Classification Based on Chromophores -- ENVIRONMENTAL CONCERN RELATED TO DYES -- DYES REMOVAL TECHNIQUES -- BIODEGRADATION MECHANISMS OF DYES -- Biosorption -- Bioaccumulation -- Biodegradation -- FUTURE PROSPECTS FOR APPLICATION -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Fungal Bioremediation of Pollutants -- Evans C. Egwim1,*, Oluwafemi A. Oyewole2 and Japhet G. Yakubu2 -- INTRODUCTION -- Pollutants and Their Classification -- Petroleum Hydrocarbons -- Heavy Metals -- Chemical Pollutants -- Synthetic Pesticides -- Industrial Dyes -- Pharmaceutical Products -- Effects of Pollutants in the Soil -- Effects of Pollutants in the Aquatic Environment -- Effects of Pollutants in the Air -- Bioremediation -- Bioremediation Techniques -- Biosparging -- Bioventing -- Bioaugmentation -- Biostimulation -- Ex situ -- Solid Phase -- Land Farming -- Composting -- Biopiles -- Slurry Phase -- Fungi -- Mycoremediation -- White Rot Fungi -- Enzyme System of WRF -- Lignin Peroxidase -- Manganese Peroxidase -- Versatile Peroxidase -- Laccase -- Cytochrome P450s Monooxygenase -- Mycoremediation of Pollutants -- Mycoremediation of Petroleum Hydrocarbons -- Mycoremediation of Dyes -- Mycoremediation of Pesticides -- Mycoremediation of Pharmaceutical Products -- Mycoremediation of Heavy Metal -- Advantages of Mycoremediation. , Limitations of Mycoremediation -- Nutrients -- Bioavailability of Pollutants -- Temperature -- Effects of pH -- Relative Humidity -- Toxicity of Pollutants -- Oxygen -- Moisture Content -- Presence of Contaminants -- CONCLUSION AND FUTURE PERSPECTIVE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Antifouling Nano Filtration Membrane -- Sonalee Das1,* and Lakshmi Unnikrishnan1 -- INTRODUCTION -- MEMBRANE FOULING -- Classification of Membrane Fouling -- Mechanism of Membrane Fouling -- Factors Affecting Membrane Fouling -- NANOFILTRATION MEMBRANES -- Mechanism of Action -- Characterization of NF Membranes -- Industrial Applications -- Challenges in NF Membranes -- Membrane Fouling -- Separation Between the Solutes -- Post-treatment of Concentrates -- Chemical Resistance -- Insufficient Rejection in Water Treatment -- Need for Modelling & -- Simulation Tools -- ANTIFOULING NANOFILTRATION (AF-NF) MEMBRANES -- Recent Progress in the Fabrication of Anti-Fouling Nanofiltration (NF) Membranes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Microbes and their Genes involved in Bioremediation of Petroleum Hydrocarbon -- Bhaskarjyoti Gogoi1, Indukalpa Das1, Shamima Begum1, Gargi Dutta1, Rupesh Kumar1 and Debajit Borah1,* -- INTRODUCTION -- TYPES OF BIOREMEDIATION STRATEGIES -- PHYSICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- CHEMICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- BIOLOGICAL METHODS -- EX-SITU BIOREMEDIATION -- In Situ Bioremediation -- Microbial Bioremediation Method -- ROLE OF BIOSURFACTANTS IN PETROLEUM HYDROCARBON DEGRADATION -- ROLE OF MICROBIAL ENZYMES AND RESPONSIBLE GENES IN HYDROCARBON DEGRADATION -- FACTORS AFFECTING BIOREMEDIATION OF PETROLEUM HYDROCARBONS -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST. , ACKNOWLEDGEMENT -- REFERENCES -- Application and Major Challenges of Microbial Bioremediation of Oil Spill in Various Environments -- Rustiana Yuliasni1, Setyo Budi Kurniawan2, Abudukeremu Kadier3,4,*, Siti Rozaimah Sheikh Abdullah2, Peng-Cheng Ma3,4, Bekti Marlena1, Nanik Indah Setianingsih1, Dongsheng Song3,5 and Ali Moertopo Simbolon1 -- INTRODUCTION -- NATURE AND COMPOSITION OF PETROLEUM CRUDE OIL -- BIOREMEDIATION AGENTS -- Bacteria as Bioremediation Agents of Hydrocarbon Contaminated Environment -- Fungal Bioremediation of Hydrocarbon Contaminated Environment -- Algae as Bioremediation Agent of Hydrocarbon Contaminated Environment -- Commercialized Product of Microbial Agents for Hydrocarbon Remediation -- APPLICATION STRATEGIES AND PRACTICES -- In-situ Bioremediation -- Ex-situ Bioremediation -- FACTOR AFFECTING BIOREMEDIATION -- Temperature -- Substances Bioavailability -- Oxygen or Alternate Electron Acceptors -- Nutrients -- MATRICES TO BE REMEDIATED -- Soil Bioremediation -- Water Bioremediation -- Sludge Bioremediation -- CONCLUSION AND FUTURE CHALLENGES -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Bioremediation of Hydrocarbons -- Grace N. Ijoma1, Weiz Nurmahomed1, Tonderayi S. Matambo1, Charles Rashama1 and Joshua Gorimbo1,* -- INTRODUCTION -- Hydrocarbon Pollution Effects on Macrobiota -- Hydrocarbon Pollution Effects on Microbiota -- The Fate of Hydrocarbon Pollution in the Environment -- Weathering, Physical and Chemical Interactions with the Terrestrial Environment -- Weathering, Physical and Chemical Interactions within the Terrestrial Environment -- Reasons for Hydrocarbon Recalcitrance to Biodegradation -- Ecotoxicology: Consortia Stress Responses, Tolerance and Adaptation -- Rate-limiting Nutrients: Changes in Nitrogen Flux -- Changes in Microbial Population Dynamics. , Microbial Consortia Interactions Employed in the Degradation of Hydrocarbons.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Hauppauge :Nova Science Publishers, Incorporated,
    Schlagwort(e): Polymerization. ; Polymers. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: It is well known that polymeric and composite materials are finding various applications in some critical areas of human endeavors, such as medicine, medical appliances, energy and the environment. This edition will, hopefully, evoke interest from scientists working in the fields of chemistry, polymer chemistry, electrochemistry and material science. Its applications and uses include: polymer electrolyte membrane fuel cells, sensors, actuators, coatings, electrochromic and electroluminescent materials, magnetic polymers, organo-metallic polymers, tissue engineering, methods of the immobilization of biological molecules, and dental and orthopedic applications. This edition is a highly valuable source for scientists, researchers, upper-level undergraduate and graduate students, as well as college and university professors, because it provides the most up-to-date reference work summarizing the pioneering research work in the field of polymeric and composite materials.
    Materialart: Online-Ressource
    Seiten: 1 online resource (372 pages)
    Ausgabe: 1st ed.
    ISBN: 9781629480619
    Serie: Polymer Science and Technology
    DDC: 620.192
    Sprache: Englisch
    Anmerkung: Intro -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- Library of Congress Cataloging-in-Publication Data -- Dedication -- Contents -- Preface -- Contributors -- About the Editor -- Acknowledgments -- Chapter 1: Advances in Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells -- Abstract -- Abbreviations -- 1. Introduction -- 2. Proton Exchange Membrane Fuel Cells (PEMFCS) -- 2.1. Role of Proton Conducting Membrane in Proton Exchange Membrane Fuel Cells -- 2.2. Requirement for Proton Conducting Membrane for Proton Exchange Membrane Fuel Cells -- 2.3. Current Status of Perfluorinated Sulfonic Acid and Alternative Proton Conducting Membranes -- 2.4. Proton Transport in Sulfonic Acid Membranes -- 2.5. Challenges Facing Sulfonic Acid Membranes in Proton Exchange Membrane Fuel Cells -- 3. High Temperature Polymer Electrolyte -- Membrane Fuel Cell -- 3.1. Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells -- 3.2. Membranes Obtained by Modification with Hygroscopic Inorganic Fillers -- 3.3. Membranes Obtained by Modification with Solid Proton Conductors -- 3.4. Membranes Obtained by Modification with Less Volatile Proton Assisting Solvent -- 3.4.1. Doping with Heterocyclic Solvents -- 3.4.2. Doping with Phosphoric Acid -- 3.4.3. Radiation Grafted and Acid Doped Membranes -- 3.5. Disadvantages of Using Phosphoric Acid Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cell Applications -- 3.6. Alternative Membranes Based on Benzimidazole Derivatives -- 3.7. Alternative Benzimidazole Polymers Doped with Heteropoly Acids -- 3.8. Membrane Impregnated with Ionic Liquids -- 3.9. Summary of Membranes Obtained by Modification of Sulfonic. , Acid Ionomers -- 4. Proton Conduction Mechanism in High Temperature Proton Conducting Membrane -- Conclusion and Prospectives -- Acknowledgments -- References -- Chapter 2: Surface-Confined Ruthenium and Osmium Polypyridyl Complexes as Electrochromic Materials -- Abstract -- Abbreviations -- 1. Introduction -- 1.1. Electrochromic Windows, Displays and Mirrors -- 1.2. Classes of Electrochromic Materials -- 1.3. Metal Complexes As Electrochromic Materials -- 1.3.1. Ruthenium (II) Complexes As Electrochromic Materials -- (I). Optical Behavior of Ruthenium Complexes -- (II). Redox Behavior of Ruthenium Complexes -- (III). Role of Spacers in Dinuclear Ruthenium Complexes -- 1.3.2. Osmium (II) Complexes As Electrochromic Materials -- 1.3.3. Other Metal Complexes As Electrochromic Materials -- 1.4. Substrates Used for Electrochromic Material -- 1.5. Modification of Substrates -- 2. Surface-Confined Ruthenium Complexes -- As Electrochromic Materials -- 2.1. Chemically Adsorbed Ruthenium Complexes -- 2.2. Physically Adsorbed Ruthenium Complexes -- 3. Surface-Confined Osmium Complexes -- As Electrochromic Materials -- 3.1. Osmium Complex-Based Monolayer -- 3.2. Osmium Complex-Based Multilayer -- 4. Surface-Confined Hetero-Metallic -- Complexes As Electrochromic Materials -- 4.1. Coordinative Supramolecular Assembly As Thin Films -- Conclusion -- Acknowledgments -- References -- Chapter 3: Magnetic Polymeric Nanocomposite Materials: Basic Principles Preparations and Microwave Absorption Application -- 1Department of Materials Science, School of Applied Physics, Faculty of Science -- and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia -- 2Institute of Hydrogen Economy, Universiti Teknologi Malaysia, -- Jalan Semarak, Kuala Lumpur, Malaysia -- Abstract -- Abbreviations -- 1. Introduction -- 2. Historical Background. , 3. Interaction Mechanisms of Electromagnetic Wave -- with Materials -- 3.1. Interaction Mechanism with Conductor Materials -- 3.2. Interaction Mechanism with Dielectric Materials -- 3.3. Interaction Mechanism with Magnetic Materials -- 4. The Reason of Using Microwave Absorbing Materials -- 5. The Criteria for Choosing the Filler and the -- Importance of Matching Conditions for Ideal -- Microwave Absorbing Materials -- 5.1. Metal-Backed Single Layer Absorber Mode -- 5.2. Stand-Alone Absorbing Material Model -- 6. Types and Properties of Polymers -- 7. Magnetic Polymer Nanocomposites -- 7.1. Nanomaterials -- 7.2. Magnetic Polymer Nanocomposites' Properties -- 7.3. Magnetic Polymer Nanocomposites' Applications -- 7.4. The Importance of Dispersion in Magnetic Polymer Nanocomposites -- 8. Preparation and Processing of -- Magnetic Polymer Nanocomposites -- 8.1. In-Situ Oxidative Polymerization Method (with Sonication) -- 8.2. One-Step Chemical Method -- 8.3. Surface-Initiated Polymerization Method -- 8.4. Microemulsion Chemical Oxidative Polymerization Method -- 8.5. Reverse Micelle Microemulsion Method -- 8.6. In-Situ Inverse Microemulsion Polymerization -- 8.7. Irradiation Induced Inverse Emulsion Polymerization -- 8.8. Miniemulsion Polymerization -- 8.9. Mechanical Melt Blending Method -- 8.10. Melt Processing Method Using Ultrasonic Bath -- 8.11. Template Free Method -- 8.12. Solution Casting Method -- 8.13. Sonochemical Method -- 8.14. Electrochemical Synthesis -- 9. Electromagnetic Wave Absorption Application of Magnetic Polymer Nanocomposites -- 9.1. The Crucial Role of Magnetic Nanoparticles and Sample Thickness in the Determination of the Microwave Absorption Application -- 9.2. Effect of Magnetic Filler Size on the Microwave Absorption and/or Electromagnetic Interference Shielding Application. , 9.3. Broadening the Microwave Absorption Range for Low and High Frequency Applications Using Binary Magnetic Nanofillers -- 9.4. The Enhancement of the Microwave Absorption for Electromagnetic Interference Shielding Application Using Magnetic and Dielectric Nanofillers -- Conclusion -- References -- Chapter 4: Polyetheramide-Birth of a New Coating Material -- Abstract -- Abbreviations -- 1. Introduction -- 2. Raw Materials and Test Methods -- 3. Linseed Oil Based Polyetheramides[LPEtA] -- 4. Soybean Oil Based Polyetheramides (SPEtA) -- 5. Albizia Lebbek Benth Oil Based PEtA (ABOPEtA) -- 6. Jatropha Seed Oil Based PEtA(JPEtA) -- 6. Olive Oil Based PEtA (OPEtA) -- Conclusion -- Acknowledgments -- References -- [1] Sørensen, P. A., Kiil,S., Dam-Johansen, K. & -- Weinell, C. E. (2009). Anticorrosive coatings: a review, J. Coat. Technol. Res., 6(2), 135-176. -- Chapter 5: Advanced Functional Polymers and Composite Materials and Their Role in Electroluminescent Applications -- Abstract -- Introduction & -- Scope of the Work -- 1. Light Emitting Diodes (LEDs), Characteristics and Categories -- (a) LED- Device Configuration -- (b) Recent Developments in The LED's Technology -- In-organic Light Emitting Diode -- Materials & -- Characteristics -- 3-I. Luminescence and Scintillation from the Inorganic Phosphor Materials -- An Ideal Luminescencent Material's Characteristics -- 3-II. Scintillation -- 3-III. Inorganic Electroluminescent Materials & -- Devices -- Organic Light Emitting Diodes Devices (OELDs) -- 4- (i). OLED Characteristics -- 4-(ii). OLED- Device Configuration & -- Working Principle -- 4-(iii). General Electroluminescent Materials Used for OLED Devices -- 4-(iv). OLED Device Fabrication -- 4-(v). OLED- Electro-Optical (EO) Properties -- 4-(vi). Quantum Efficiency of OLED Devices -- The Classifications of OLED types. , 4-I. An Overview of Historical Background about Polymeric OLEDs -- (P-OLEDs) -- 4-II. Polymeric OLEDs (P-OLEDs) as Electroluminescent Devices -- 4- III. Polymeric OLEDs (P-OLEDs) Employed in Various Device's Applications -- Conclusion -- Acknowledgments -- References -- [1] Akcelrud, L. Prog. Polym. Sci. 28 (2003). 875-962. -- Chapter 6: Poly(Methacrylic Acid) and Poly (Itaconic Acid) Applications as pH-Sensitive Actuators -- Abstract -- Abbreviations -- 1. Introduction -- 2. Methacrylic Acid and Itaconic Acid -Basic Properties -- 2. Poly(methacrylic acid) and Poly(Itaconic Acid) pH-sensitive Polymers -- 2.1. Linear Systems -- 2.2. Hydrogels -- 2.3. Amphiphillic Block and Graft Copolymers (Micelles) -- 2.4. Modified Surfaces and Membranes -- Conclusion -- Acknowledgments -- References -- Chapter 7: Cell Scaffolds and Fabrication Technologies for Tissue Engineering -- Abstract -- Abbreviations -- 1. Introduction -- 2. Cell Based-Therapies for Tissue Engineering -- 3. Scaffolds Preparation Technologies -- 3.1. Nanofibrous -- 3.2. Freeze-Drying -- 3.3. Fiber Bonding -- 3.4. Phase Separation -- 3.5. Gas Foaming -- 3.6. Rapid Prototyping -- 4. Special Applications in Tissue Ingineering -- 4.1. Injectable Matrices for Cell Therapy -- 4.2. Bioceramic Matrices for Cell Therapy -- Conclusion -- Acknowledgments -- References -- Chapter 8: Immobilization of Lipase by Physical Adsorption on Selective Polymers -- Abstract -- Abbreviations -- 1. Introduction -- 2. The Mechanism of Action of Lipases -- 3. Properties of Enzymes Influenced by Immobilization -- 4. Properties of Matrices for Immobilization -- 5. Methods for Enzyme Immobilization -- 5.1. Physical Adsorption -- Advantages and Disadvantages of Enzymes Immobilization Using the Adsorption Technique -- 5.2. Ionic Binding -- 5.3. Covalent Binding. , Advantages and Disadvantages of Enzymes Immobilization Using the Covalent Technique.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Sharjah :Bentham Science Publishers,
    Schlagwort(e): Electronic books.
    Beschreibung / Inhaltsverzeichnis: Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 2 explains the methods used to control the remediation processes making it cost-effectively and feasible. It elaborates on the application of microbial enzymes, microalgae, and genetically engineered microorganisms in the bioremediation of significant pollutants, food wastes, distillery wastewater, and pharmaceutical wastes. This book is invaluable for researchers and scientists in environmental science, environmental microbiology, and waste management. It also serves as a learning resource for graduate and undergraduate students in environmental science, microbiology, limnology, freshwater ecology, and microbial biotechnology.
    Materialart: Online-Ressource
    Seiten: 1 online resource (395 pages)
    Ausgabe: 1st ed.
    ISBN: 9789815123524
    Serie: Sustainable Materials Series ; v.2
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Milton :Taylor & Francis Group,
    Schlagwort(e): Porous materials. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: Internationally assembled experts in the field describe developments and advances in synthesis, tuning parameters, and applications of porous polymers. Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers.
    Materialart: Online-Ressource
    Seiten: 1 online resource (277 pages)
    Ausgabe: 1st ed.
    ISBN: 9781000567168
    DDC: 547/.7
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Introduction to Porous Polymers -- 1.1 Introduction -- 1.2 Types of Porous Polymers -- 1.3 Synthetic Methods for Porous Polymer Network -- 1.4 Conclusion -- References -- Chapter 2: Hyper-crosslinked Polymers -- 2.1 Introduction -- 2.1.1 Overview -- 2.1.2 Porous Polymer -- 2.1.3 Crosslinking -- 2.2 Hyper-crosslinked Polymers -- 2.3 Synthesis Methods of HCPs -- 2.3.1 Post-crosslinking Polymer Precursors -- 2.3.2 Direct One-Step Polycondensation -- 2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers -- 2.4 Structure and Morphology of HCPs -- 2.4.1 Nanoparticles -- 2.4.2 Hollow Capsules -- 2.4.3 2D Membranes -- 2.4.4 Monoliths -- 2.5 HCPs Properties -- 2.5.1 Polymer Surface -- 2.5.1.1 Hydrophilicity -- 2.5.1.2 Hydrophobicity -- 2.5.1.3 Amphiphilicity -- 2.5.2 Porosity and Surface Area -- 2.5.3 Swelling Behavior -- 2.5.4 Thermomechanical Properties -- 2.6 Functionalization of HCPs -- 2.7 Characterization of HCPs -- 2.7.1 Compositional and Structural Characterization -- 2.7.2 Morphological Characterization -- 2.7.3 Porosity and Surface Area Analysis -- 2.7.4 Other Analysis -- 2.8 Applications -- 2.8.1 Storage Capacity -- 2.8.1.1 Storage of Hydrogen -- 2.8.1.2 Storage of Methane -- 2.8.1.3 CO 2 Capture -- 2.8.2 Environmental Remediation -- 2.8.3 Heterogeneous Catalysis -- 2.8.4 Drug Delivery -- 2.8.5 Sensing -- 2.8.6 Other Applications -- 2.9 Conclusion -- References -- Chapter 3: Porous Ionic Polymers -- 3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers -- 3.2 Ionic Polymers in Dry State -- 3.3 Ionic Polymers in Swollen State: Hsu-Gierke Model -- 3.4 Modifications of Hsu-Gierke Model: Hydration of Ion Exchange Polymers. , 3.5 Methods for Research of Porous Structure of Ionic Polymers -- 3.5.1 Nitrogen Adsorption-Desorption -- 3.5.2 Mercury Intrusion -- 3.5.3 Adsorption-Desorption of Water Vapor -- 3.5.4 Differential Scanning Calorimetry -- 3.5.5 Standard Contact Porosimetry -- 3.6 Conclusions -- References -- Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics -- 4.1 Introduction -- 4.2 Sorting of Porous Polymers -- 4.2.1 Macroporous Polymers -- 4.2.2 Microporous Polymers -- 4.2.3 Mesoporous Polymers -- 4.3 Methodology -- 4.3.1 AHP Analysis -- 4.4 Conclusions -- References -- Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology -- 5.1 Background -- 5.2 Porous Polymers Based on Natural Polysaccharides -- 5.3 Parameters Involved in the Porous Polymers Processing by High Pressure -- 5.4 Supercritical Fluid Drying for Porous Polymers Processing -- 5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology -- 5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging -- 5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating -- 5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid -- 5.9 Porous Metal-Organic Frameworks Polymers by Supercritical Fluid Processing -- 5.10 Concluding Remarks -- Acknowledgments -- References -- Chapter 6: Porous Polymer for Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Stability and Functionalization of POPs -- 6.3 Strategies for Synthesizing POP Catalyst -- 6.3.1 Co-polymerization -- 6.3.1.1 Acidic and Basic Groups -- 6.3.1.2 Ionic Groups -- 6.3.1.3 Ligand Groups -- 6.3.1.4 Chiral Groups -- 6.3.1.5 Porphyrin Group -- 6.3.2 Self-polymerization -- 6.3.2.1 Organic Ligand Groups -- 6.3.2.2 Organocatalyst Groups -- 6.3.2.3 Ionic Groups -- 6.3.2.4 Chiral Ligand Groups -- 6.3.2.5 Porphyrin Groups. , 6.4 Applications of Various Porous Polymers -- 6.4.1 CO 2 Capture and Utilization -- 6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP -- 6.4.1.1.1 Mechanism of the Cycloaddition Reaction -- 6.4.1.2 Triphenylphosphine-based POP -- 6.4.2 Energy Storage -- 6.4.3 Heterogeneous Catalysis -- 6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction -- 6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins -- 6.4.3.3 Ni(II)-metallated POP for Suzuki-Miyaura Crosscoupling Reaction -- 6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2 -- 6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols -- 6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs -- 6.4.4 Photocatalysis -- 6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units -- 6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst -- 6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles -- 6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst -- 6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole -- 6.4.5 Electrocatalysis -- 6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR) -- References -- Chapter 7: Triazine Porous Frameworks -- 7.1 Introduction -- 7.2 Synthetic Procedures of CTFs and Their Structural Designs -- 7.2.1 Ionothermal Trimerization Strategy -- 7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method -- 7.2.3 Amidine-based Polycondensation Methods -- 7.2.4 Superacid Catalyzed Method -- 7.2.5 Friedel-Crafts Reaction Method -- 7.3 Applications of CTFs -- 7.3.1 Adsorption and Separation -- 7.3.1.1 CO 2 Capture and Separation -- 7.3.1.2 The Removal of Pollutants -- 7.3.2 Heterogeneous Catalysis -- 7.3.3 Applications for Energy Storage and Conversion -- 7.3.3.1 Metal-Ion Batteries -- 7.3.3.2 Supercapacitors. , 7.3.4 Electrocatalysis -- 7.3.5 Photocatalysis -- 7.3.6 Other Applications of CTFs -- References -- Chapter 8: Advanced Separation Applications of Porous Polymers -- 8.1 Introduction -- 8.2 Advanced Separation Applications -- 8.3 Separation through Adsorption -- 8.4 Water Treatment -- 8.5 Conclusion -- Abbreviations -- References -- Chapter 9: Porous Polymers for Membrane Applications -- 9.1 Introduction -- 9.2 Introduction to Synthesis of Porous Polymeric Particles -- 9.3 Preparation of Porous Polymeric Membrane -- 9.4 Morphology of Membrane and Its Parameters -- 9.5 Emerging Applications of Porous Polymer Membranes -- 9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application -- 9.6.1 Polysulfone Membranes -- 9.6.2 Polyvinylidene Fluoride Membranes -- 9.7 Use of Porous Polymeric Membranes for Sensing Application -- 9.8 Use of Porous Polymeric Electrolytic Membranes Application -- 9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization -- 9.10 Use of Porous Polymers for Biomedical Application -- 9.11 Use of Porous Polymeric Membrane in Tissue Engineering -- 9.12 Use of Porous Polymeric Membrane in Wastewater Treatment -- 9.13 Use of Porous Polymeric Membrane for Dye Rejection Application -- 9.14 Porous Polymeric Membrane Antifouling Application -- 9.15 Porous Polymeric Membrane Used for Fuel Cell Application -- 9.16 Conclusion -- References -- Chapter 10: Porous Polymers in Solar Cells -- 10.1 Introduction -- 10.1.1 Si-based Solar Cells -- 10.1.2 Thin-film Solar Cells -- 10.1.3 Organic Solar Cells -- 10.2 Porous Polymers in DSSCs -- 10.2.1 Porous Polymers in Electrodes -- 10.2.2 Porous Polymer as a Counter Electrode -- 10.2.3 Porous Polymers in TiO 2 Photoanode -- 10.2.4 Porous Polymers in Electrolyte -- 10.2.5 Porous Polymer as Energy Conversion Film. , 10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes -- 10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs) -- 10.2.6 Porous Polymers in Coating of Solar Cell -- 10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst -- 10.3 Perovskite Solar Cells -- 10.3.1 Porous Polymers in Electron Transport Layers -- 10.3.2 Porous Polymers in Hole Transport Layers -- 10.3.3 Porous Polymer as Energy Conversion Film -- 10.3.4 Porous Polymers as Interlayers -- 10.3.5 Porous Polymers in Morphology Regulations -- 10.4 Porous Polymers in Silicon Solar Cell -- 10.5 Miscellaneous -- 10.5.1 Porous Polymers in Solar Evaporators -- 10.5.2 Charge Separation Systems in Solar Cells -- 10.5.3 Porous Polymers in ZnO Photoanode -- 10.6 Conclusions -- References -- Chapter 11: Porous Polymers for Hydrogen Production -- 11.1 Introduction -- 11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs) -- 11.1.1.1 Infiltration -- 11.1.1.2 Layer-by-Layer Assembly (LbL) -- 11.1.1.3 Conventional Polymerization -- 11.1.1.4 Electrochemical Polymerization -- 11.1.1.5 Controlled/Living Polymerization (CLP) -- 11.1.1.6 Macromolecular Design -- 11.1.1.7 Self-assembly -- 11.1.1.8 Phase Separation -- 11.1.1.9 Solid and Liquid Templating -- 11.1.1.10 Foaming -- 11.2 Various Porous Polymers for H 2 Production -- 11.2.1 Photocatalysts Based on Conjugated Microporous Polymers -- 11.2.2 Conjugated Microporous Polymers -- 11.2.3 Porous Conjugated Polymer (PCP) -- 11.2.4 Membrane Reactor -- 11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure -- 11.2.6 Porous Organic Polymers (POPs) -- 11.2.7 PEM Water Electrolysis -- 11.2.8 Microporous Inorganic Membranes -- 11.2.9 Hybrid Porous Solids for Hydrogen Evolution -- 11.3 Other Alternatives for Hydrogen Production -- 11.3.1 Metal-Organic Frameworks (MOFs) -- 11.3.2 Covalent Organic Frameworks. , 11.3.3 Photochemical Device.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands,
    Schlagwort(e): Ion exchange. ; Ion exchange. fast. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This overview of the industrial applications of ion-exchange materials focuses on their use in a host of fields including chemical and biochemical separation, water purification, biomedical science, toxic metal recovery and manufacturing alcoholic drinks.
    Materialart: Online-Ressource
    Seiten: 1 online resource (462 pages)
    Ausgabe: 1st ed.
    ISBN: 9789400740266
    Sprache: Englisch
    Anmerkung: Intro -- Ion Exchange Technology II -- Preface -- Editors' Bios -- Contents -- Contributors -- List of Abbreviations -- Chapter 1: Separation of Amino Acids, Peptides, and Proteins by Ion Exchange Chromatography -- Chapter 2: Application of Ion Exchanger in the Separation of Whey Proteins and Lactin from Milk Whey -- Chapter 3: Application of Ion Exchangers in Speciation and Fractionation of Elements in Food and Beverages -- Chapter 4: Applications of Ion Exchangers in Alcohol Beverage Industry -- Chapter 5: Use of Ion Exchange Resins in Continuous Chromatography for Sugar Processing -- Chapter 6: Application of Ion Exchange Resins in the Synthesis of Isobutyl Acetate -- Chapter 7: Therapeutic Applications of Ion Exchange Resins -- Chapter 8: Application of Ion Exchange Resins in Kidney Dialysis -- Chapter 9: Zeolites as Inorganic Ion Exchangers for Environmental Applications: An Overview -- Chapter 10: Ion Exchange Materials and Environmental Remediation -- Chapter 11: Metal Recovery, Separation and/or Pre-concentration -- Chapter 12: Application of Ion Exchange Resins in Selective Separation of Cr(III) from Electroplating Effluents -- Chapter 13: Effect of Temperature, Zinc, and Cadmium Ions on the Removal of Cr(VI) from Aqueous Solution via Ion Exchange with Hydrotalcite -- Chapter 14: An Overview of '3d' and '4f' Metal Ions: Sorption Study with Phenolic Resins -- Chapter 15: Inorganic Ion Exchangers in Paper and Thin-Layer Chromatographic Separations -- Chapter 16: Cation-Exchanged Silica Gel-Based Thin-Layer Chromatography of Organic and Inorganic Compounds -- Chapter 17: Ion Exchange Technology: A Promising Approach for Anions Removal from Water -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Milton :Taylor & Francis Group,
    Schlagwort(e): Semiconductors-Optical properties. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This comprehensive reference describes the classifications, optical properties and applications of semiconductors. Accomplished experts in the field share their knowledge and examine new developments. This is an invaluable resource for engineers, scientists, academics and Industry R&D teams working in applied physics.
    Materialart: Online-Ressource
    Seiten: 1 online resource (186 pages)
    Ausgabe: 1st ed.
    ISBN: 9781000598957
    DDC: 537.6/226
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Semiconductor Optical Fibers -- Chapter 2: Optical Properties of Semiconducting Materials for Solar Photocatalysis -- Chapter 3: Semiconductor Optical Memory Devices -- Chapter 4: Semiconductor Optical Utilization in Agriculture -- Chapter 5: Nonlinear Optical Properties of Semiconductors, Principles, and Applications -- Chapter 6: Semiconductor Photoresistors -- Chapter 7: Semiconductor Photovoltaic -- Chapter 8: Progress and Challenges of Semiconducting Materials for Solar Photocatalysis -- Chapter 9: Linear Optical Properties of Semiconductors: Principles and Applications -- Chapter 10: Computational Techniques on Optical Properties of Metal-Oxide Semiconductors -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Milton :Taylor & Francis Group,
    Schlagwort(e): Electronic books.
    Beschreibung / Inhaltsverzeichnis: Surveys recent advances in conducting polymers and their composites. Chapters address synthetic approaches, and applications in all types of electrochemical energy storage devices and next-generation devices. Evaluates the execution of these materials as electrodes in electrochemical power sources.
    Materialart: Online-Ressource
    Seiten: 1 online resource (353 pages)
    Ausgabe: 1st ed.
    ISBN: 9780429510885
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Contributors -- Editors -- Chapter 1. Polythiophene-Based Battery Applications -- 1.1 Introduction -- 1.2 Synthesis -- 1.2.1 Electrochemical Polymerization -- 1.2.2 Chemical Synthesis -- 1.3 Battery Applications of PTs -- 1.3.1 PTs as Cathodic Materials -- 1.3.1.1 PTs as Active Materials -- 1.3.1.2 PTs as Binder -- 1.3.1.3 PTs as Conduction-Promoting Agents -- 1.3.2 PTs as Air Cathode -- 1.3.2.1 Li-Air Batteries -- 1.3.2.2 Aluminum-Air Battery -- 1.3.2.3 Zinc-Air Battery -- 1.3.3 PTs as Anodic Materials -- 1.3.3.1 PTs as Active Materials for Anode -- 1.3.3.2 PTs as Binders -- 1.3.3.3 PTs as Conduction Promoting Agents (CPAs) -- 1.3.4 PTs as Battery Separators -- 1.3.4.1 Li-Ion Batteries -- 1.3.4.2 Li-S Batteries -- 1.3.4.3 Li-O2 Batteries -- 1.3.5 PTs as Electrolytes -- 1.3.6 PTs as Coin-cell Cases -- 1.3.7 PTs as Li-O2 Catalyst -- 1.4 Conclusion -- References -- Chapter 2. Synthetic Strategies and Significant Issues for Pristine Conducting Polymers -- 2.1 Introduction -- 2.2 Conduction Mechanism -- 2.3 Synthesis of Conducting Polymers -- 2.3.1 Synthesis through Polymerization -- 2.3.1.1 Chain-Growth Polymerization -- 2.3.1.2 Step-Growth Polymerization -- 2.3.2 Synthesis by Doping with Compatible Dopants -- 2.3.2.1 Types of Doping Agents -- 2.3.2.2 Doping Techniques -- 2.3.2.3 Mechanism of Doping -- 2.3.2.4 Influence of Doping on Conductivity -- 2.3.3 Electrochemical Polymerization -- 2.3.4 Photochemical Synthesis -- 2.4 Various Issues for Synthesis -- 2.4.1 Vapor-Phase Polymerization -- 2.4.2 Hybrid Conducting Polymers -- 2.4.3 Nanostructure Conducting Polymers -- 2.4.4 Narrow Bandgap Conducting Polymers -- 2.4.5 Synthesis in Supercritical CO2 -- 2.4.6 Biodegradability and Biocompatibility of Conducting Polymers -- 2.5 Applications. , 2.6 Future Scope for Applications -- 2.7 Conclusions -- Abbreviations -- References -- Chapter 3. Conducting Polymer Derived Materials for Batteries -- 3.1 Introduction -- 3.2 Theory -- 3.3 Discussion on Conducting Polymer-Derived Materials -- 3.3.1 PEDOT Derivatives -- 3.3.1.1 Structural Properties -- 3.3.1.2 Electrochemical Studies of PEDOT and Its Derivatives -- 3.3.1.3 Magnetic Properties -- 3.3.2 PPy for the Energy-Storage Devices -- 3.3.2.1 Structural Property of PPy -- 3.3.2.2 Electrochemical Properties of Polypyrrol -- 3.3.2.3 Magnetic Properties -- 3.3.3 PANI for Battery Application -- 3.3.3.1 Structural Properties -- 3.3.3.2 Electrochemical Properties of PANI for Battery Electrode -- 3.3.3.3 Magnetic Properties of PANI -- 3.4 Summary and Conclusions -- References -- Chapter 4. An Overview on Conducting Polymer-Based Materials for Battery Application -- 4.1 Introduction -- 4.2 Principle of Conducting Polymer Battery -- 4.3 Assortment of Conducting Polymer Electrodes for Battery Application -- 4.4 Mechanism of Conducting Polymers in Rechargeable Batteries -- 4.5 Organic Conducting Polymer for Lithium-ion Battery -- 4.5.1 Types of Organic Conducting Polymers -- 4.6 Synthesis of Conducting Polymer -- 4.6.1 Hard-template Method -- 4.6.2 Soft-template Method -- 4.6.3 Template-free Technique -- 4.6.4 Self-Assembly or Interfacial -- 4.6.5 Electrospinning -- 4.7 Characterization -- 4.7.1 Surface Characterization by AFM and AFMIR -- 4.7.2 Transmission Electron Microscopy -- 4.7.3 Electrochemical Characterization -- 4.8 Applications of Various Conducting Polymers in Battery -- 4.8.1 Polyacetylene Battery -- 4.8.2 Polyaniline Batteries -- 4.8.3 Poly (p-phenylene) Batteries -- 4.8.4 Heterocyclic Polymer Batteries -- 4.9 Summary and Outlook -- References -- Chapter 5. Polymer-Based Binary Nanocomposites -- 5.1 Introduction -- 5.2 Binary Composites. , 5.3 Nanostructured CPs -- 5.4 Strategies to Improve Performance -- 5.4.1 Low-dimensional Capacitors -- 5.4.2 Hybrid Capacitors -- 5.4.2.1 Hybrid Electrode Material -- 5.5 CP/Carbon-based Binary Composite -- 5.6 CP/Metal Oxides Binary Composites -- 5.7 CP/Metal Sulfides Binary Complexes -- 5.8 Other Cp-supported Binary Complexes -- 5.9 Conclusion -- References -- Chapter 6. Polyaniline-Based Supercapacitor Applications -- 6.1 Introduction -- 6.2 Polyaniline (PANI) and Its Application Potential -- 6.3 Supercapacitors -- 6.3.1 PANI in Supercapacitors -- 6.3.2 PANI and Carbon Composites -- 6.3.3 PANI/Porous and Carbon Composites -- 6.3.4 PANI/Graphene Composites -- 6.3.5 PANI/CNTs Composites -- 6.3.6 Polyaniline Activation/Carbonization -- 6.3.7 Composites of Polyaniline with Various Conductive Polymer Blends -- 6.3.8 Composites of Polyaniline with Transition Metal Oxides -- 6.3.9 Composites of Polyaniline Core-Shells with Metal Oxides -- 6.3.10 PANI-modified Cathode Materials -- 6.3.11 PANI-modified Anode Materials -- 6.4 Redox-active Electrolytes for PANI Supercapacitors -- 6.5 Examples of Various Polyaniline-based Supercapacitor -- 6.5.1 Composites of Polyaniline Doped with CoCl2 as Materials for Electrodes -- 6.5.2 Composites of Polyaniline Nanofibers with Graphene as materials for electrodes -- 6.5.3 Composites of Polyaniline (PANI) with Graphene Oxide as Electrode Materials -- 6.5.4 Hybrid Films of Manganese Dioxide and Polyaniline as Electrode Materials -- 6.5.5 Composites of Activated Carbon/Polyaniline with Tungsten Trioxide as Electrode Materials -- 6.5.6 PANI- and MOF-based Flexible Solid-state Supercapacitors -- 6.5.7 Polyaniline-based Nickel Electrodes for Electrochemical Supercapacitors -- 6.5.8 Hydrogel of Ultrathin Pure Polyaniline Nanofibers in Supercapacitor Application -- Conclusion -- Acknowledgements -- References. , Chapter 7. Conductive Polymer-derived Materials for Supercapacitor -- 7.1 Introduction -- 7.2 Types of Supercapacitor -- 7.3 Parameters of Supercapacitors -- 7.4 Conducting Polymers (CPs) as Electrode Materials -- 7.4.1 Class of Conducting Polymer as Supercapacitor Electrode -- 7.5 Polyaniline (PANI)-based Electrode -- 7.6 Polypyrrole (PPy)-based Electrode -- 7.7 Polythiophene (PTh)-based Electrode -- 7.8 Conclusions -- Acknowledgement -- References -- Chapter 8. Conducting Polymer-Metal Based Binary Composites for Battery Applications -- 8.1 Conducting polymer (CPs) -- 8.2 Conducting polymers conductivity -- 8.3 Conducting polymer composites -- 8.3.1 Metal center nanoparticles -- 8.3.2 Metal nanoparticles -- 8.4 Conducting Polymer Based Binary Composites -- 8.4.1 Metal Matrix Composites (MMC) -- 8.4.2 Poly (Thiophene) composite -- 8.4.3 Poly (Para-Phenylene Vinylene) composite -- 8.4.4 Poly (Carbazole) composite -- 8.4.5 Vanadium oxide based conducting composite -- 8.4.6 PANI-V2O5 composite -- 8.4.7 Poly(N-sulfo propyl aniline)-V2O5 composite -- 8.5 Conducting polymer composite battery applications -- 8.5.1 Conducting polymer composite for Lithium-ion (Li+) based battery -- 8.5.2 Conducting polymer composites for Sodium-ion (Na+) based Battery -- 8.5.3 Conducting Polymer composite for Mg-Ion (Mg+2) Based Battery -- 8.6 Conducting polymer based composites for electrode materials -- References -- Chapter 9. Novel Conducting Polymer-Based Battery Application -- 9.1 Conducting Polymers (CPs) -- 9.1.1 Poly(Acetylene) -- 9.1.2 Poly(Thiophene) -- 9.1.3 Poly(Aniline) -- 9.1.4 Poly(Pyrrole) -- 9.1.5 Poly(Paraphenylene) and Poly(Phenylene) -- 9.2 Battery Applications of Conducting Polymers -- 9.2.1 Lithium Sulfide batteries -- 9.2.2 Binder for Lithium sulfide battery cathode -- 9.2.3 Sulfur encapsulation for electrode materials. , 9.2.4 Sulfur Encapsulation through Conductive Polymers -- 9.2.5 Conducting polymer anodes for Lithium sulfide battery -- 9.2.6 Conducting polymer as materials interlayer -- 9.3 Li+-ion-based Battery Applications of Conducting Polymers -- 9.4 Na+- ion-based Battery Applications of Conducting Polymers -- 9.5 Mg+2-ion-based Battery Applications of Conducting Polymers -- References -- Chapter 10. Conducting Polymer-Carbon-Based Binary Composites for Battery Applications -- Abbreviations -- 10.1 Introduction -- 10.2 Batteries -- 10.2.1 Types of Batteries -- 10.2.2 Electrode Materials -- 10.3 Conducting Polymer-Carbon-Based Binary Composite in Battery Applications -- 10.3.1 Polyaniline PANI-Carbon-Based Composite -- 10.3.2 Polypyrrole (PPy)-Carbon-Based Composite -- 10.3.3 Poly(3,4-ethylenedioxythiophene) (PEDOT)-Carbon-Based Composite -- 10.3.4 Others Conducting Polymer-Carbon-Based Composite -- 10.4 Conclusions -- Acknowledgements -- References -- Chapter 11. Polyethylenedioxythiophene-Based Battery Applications -- 11.1 Chemistry of PEDOT -- 11.1.1 PEDOT Synthesis and Morphology -- 11.1.1.1 Synthetic Techniques to Achieve Desired Morphologies -- 11.1.2 PEDOT-Based Nanocomposites -- 11.2 PEDOT-Based Polymers in Lithium-Sulfur Batteries -- 11.3 Lithium-Air Battery Based on PEDOT or PEDOT:PSS -- 11.3.1 PEDOT-Based Nanocomposites for Li-O2 Batteries -- 11.3.2 PEDOT:PSS-Based Li-O2 Battery Cathodes -- 11.4 Lithium and Alkali Ion Polythiophene Batteries -- 11.4.1 Cathodes -- 11.4.1.1 Cathode Binders and Composites -- 11.4.2 Anodes -- 11.4.2.1 Anode Binders and Composites -- 11.4.3 All-Polythiophene and Metal-Free Batteries -- References -- Chapter 12. Polythiophene-Based Supercapacitor Applications -- 12.1 Introduction -- 12.2 Properties of Polythiophene (PTh) -- 12.3 Synthesis of Polythiophene -- 12.4 Charge Storage in Polythiophene Electrochemical Capacitors. , 12.5 Polythiophene Electrode Fabrication.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands,
    Schlagwort(e): Solvents. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book offers an overview of types of solvents and discusses their applications in extraction, organic synthesis, biocatalytic processes, production of fine chemicals, biochemical transformations, composite material, energy storage, polymers and more.
    Materialart: Online-Ressource
    Seiten: 1 online resource (517 pages)
    Ausgabe: 1st ed.
    ISBN: 9789400728912
    DDC: 541.3482
    Sprache: Englisch
    Anmerkung: Intro -- Green Solvents II -- Preface -- Editor's Biography -- Acknowledgments -- Contents -- Contributors -- Chapter 1: Ionic Liquids as Green Solvents: Progress and Prospects -- 1.1 Introduction -- 1.2 History of Ionic Liquids (ILs) -- 1.3 Structure of Ionic Liquids (ILs) -- 1.3.1 Cations -- 1.3.2 Anions -- 1.4 Synthesis of Ionic Liquids (ILs) -- 1.4.1 Quaternization Reactions -- 1.4.2 Anion-Exchange Reactions -- 1.4.2.1 Lewis-Acid-Based Ionic Liquids (ILs) -- 1.4.2.2 Anion Metathesis -- 1.5 Properties of Ionic Liquids (ILs) -- 1.5.1 Melting Point -- 1.5.2 Volatility -- 1.5.3 Thermal Stability -- 1.5.4 Viscosity -- 1.5.5 Density -- 1.5.6 Polarity -- 1.5.7 Conductivity and Electrochemical Window -- 1.5.8 Toxicity -- 1.5.9 Air and Moisture Stability -- 1.5.10 Cost and Biodegradability -- 1.6 Solvent Properties and Solvent Effects -- 1.6.1 Solute-Ionic Liquids (ILs) Interactions -- 1.6.1.1 Interaction of Ionic Liquids (ILs) with Water -- 1.6.1.2 Interaction of Ionic Liquids (ILs) with Acid and Base -- 1.6.1.3 Interaction of Ionic Liquids (ILs) with Aromatic Hydrocarbon -- 1.6.1.4 Interaction with Chiral Substrates -- 1.7 Conclusions -- References -- Chapter 2: Ionic Liquids as Green Solvents for Alkylation and Acylation -- 2.1 Introduction -- 2.2 Alkylation -- 2.2.1 Ionic Liquids as Green Solvents -- 2.2.2 Ionic Liquids as Dual Green Solvents and Catalysts -- 2.2.3 Ionic Liquids Immobilized on Solid Supports -- 2.3 Acylation -- 2.3.1 Ionic Liquids as Green Solvents -- 2.3.2 Ionic Liquids in Dual Role as Green Solvents and Catalysts -- 2.3.3 Immobilized Ionic Liquids -- 2.4 Remarks -- References -- Chapter 3: Ionic Liquids as Green Solvents for Glycosylation Reactions -- 3.1 Introduction -- 3.2 Preparation of Acid-Ionic Liquids -- 3.3 Reusability of Acid-Ionic Liquids -- 3.4 Tunability and Basicity of Ionic Liquids. , 3.5 Nonvolatility of Ionic Liquids -- 3.6 Conclusions -- References -- Chapter 4: Ionic Liquid Crystals -- 4.1 Introduction -- 4.2 Ionic Liquid Crystals Based on Organic Cationsand Anions -- 4.2.1 Imidazolium-Based Ionic Liquid Crystals -- 4.2.2 Pyrrolidinium-Based Ionic Liquid Crystals -- 4.2.3 Pyridinium and Bipyridinium-Based IonicLiquid Crystals -- 4.2.4 Morpholinium-, Piperazinium-, and Piperidinium-BasedIonic Liquid Crystals -- 4.2.5 Ammonium-Based Ionic Liquid Crystals -- 4.2.6 Guanidinium-Based Ionic Liquid Crystals -- 4.2.7 Phosphonium-Based Ionic Liquid Crystals -- 4.2.8 Anions -- 4.3 Ionic Liquid Crystals Based on Metal Ions -- 4.4 Polymeric Ionic Liquid Crystals -- 4.4.1 Main-Chain Ionic Liquid-Crystalline Polymers -- 4.4.2 Side-Chain Ionic Liquid-Crystalline Polymers -- 4.4.3 Dendrimers -- 4.5 Applications of Ionic Liquid Crystals -- 4.6 Conclusions -- References -- Chapter 5: Application of Ionic Liquids in Extraction and Separation of Metals -- 5.1 Introduction -- 5.2 Processing Metal Oxides and Ores with Ionic Liquids -- 5.2.1 Metal Oxides Processing -- 5.2.2 Mineral Processing -- 5.3 Electrodeposition of Metals Using Ionic Liquids -- 5.3.1 Electrodeposition of Aluminum -- 5.3.2 Electrodeposition of Magnesium -- 5.3.3 Electrodeposition of Titanium -- 5.4 Ionic Liquids in Solvent Extraction of Metal Ions -- 5.5 Conclusions -- References -- Chapter 6: Potential for Hydrogen Sulfide Removal Using Ionic Liquid Solvents -- 6.1 Introduction -- 6.2 Ionic Liquids as Physical Solvents for H 2 S Removal -- 6.3 Hybrid Solvents Comprising Ionic Liquids and Amines -- 6.4 Conclusions and Outlook -- References -- Chapter 7: Biocatalytic Reactions in Ionic Liquid Media -- 7.1 Introduction -- 7.2 Biocatalyst Tested in Ionic Liquids -- 7.2.1 Lipases -- 7.2.2 Esterases and Proteases -- 7.2.3 Glycosidases -- 7.2.4 Oxidoreductases. , 7.3 Effect of the Ionic Liquid Composition on the Activity and Stability of Enzymes -- 7.4 Biotransformation in Ionic Liquids -- 7.4.1 Synthesis of Flavour Esters -- 7.4.2 Biotransformations of Polysaccharides and Nucleotides -- 7.4.3 Synthesis of Biodiesel -- 7.4.4 Synthesis of Polyesters -- 7.4.5 Resolution of Racemates -- 7.4.6 Synthesis of Carbohydrates -- 7.5 Conclusions -- References -- Chapter 8: Ionic Liquids/Supercritical Carbon Dioxide as Advantageous Biphasic Systems in Enzymatic Synthesis -- 8.1 Introduction -- 8.2 Supercritical Carbon Dioxide in Enzymatic Synthesis -- 8.3 Ionic Liquids as Reaction Media in Enzymatic Synthesis -- 8.4 Supercritical Carbon Dioxide/Ionic Liquid Biphasic System in Enzymatic Synthesis -- 8.5 Conclusions -- References -- Chapter 9: Ionic Liquids as Lubricants -- 9.1 Introduction -- 9.2 Overview of Ionic Liquids (ILs) -- 9.2.1 Definition and Types of Ionic Liquids (ILs) -- 9.2.2 Relationship Between Molecular Structure and Properties of Ionic Liquids (ILs) -- 9.3 Common Ionic Liquids (ILs) as Lubricants -- 9.3.1 Ionic Liquids (ILs) as Lubrication Oils -- 9.3.1.1 Ionic Liquids (ILs) as Lubrication Oils for Fe Alloy/Steel or Steel/Steel Contacts -- 9.3.1.2 Ionic Liquids (ILs) as Lubrication Oils of Light Alloys -- 9.3.1.3 Ionic Liquids (ILs) as Lubrication Oils for Specific Contacts -- 9.3.1.4 Ionic Liquids (ILs) as Lubrication Oils Under Vacuum -- 9.3.2 Ionic Liquids (ILs) as Lubrication Additives -- 9.3.2.1 Ionic Liquids (ILs) as Water Additives -- 9.3.2.2 Ionic Liquids (ILs) as Mineral Oil Additives -- 9.3.2.3 Ionic Liquids (ILs) as Synthetic Oil and Lubrication Grease Additives -- 9.3.2.4 Ionic Liquids (ILs) as Polymer Material Additives -- 9.3.3 Additives of Ionic Liquid (IL) Lubricants -- 9.3.4 Thin Films -- 9.4 Function of Ionic Liquids (ILs) as Lubricants. , 9.4.1 Function of Ionic Liquids (ILs) as Lubrication Oils -- 9.4.2 Function of Ionic Liquids (ILs) as Additives or Thin Films -- 9.5 Lubrication Mechanism -- 9.6 Conclusions and Outlook -- References -- Chapter 10: Stability and Activity of Enzymes in Ionic Liquids -- 10.1 Introduction -- 10.1.1 Ionic Liquid in Reference to Its Origin -- 10.1.2 Ionic Liquid as a Solvent -- 10.1.3 Enzymes in Ionic Liquids -- 10.2 Enzyme Stability in Ionic Liquids -- 10.2.1 Stability of Lipases -- 10.2.2 Stability of Monellin -- 10.2.3 Stability of Cytochrome c -- 10.2.4 Stability of α -Chymotrypsin -- 10.2.5 Stability of Penicillin G Acylase -- 10.3 Methods of Stabilizing Proteins/Enzymes in Ionic Liquids -- 10.3.1 Stabilization by Ionic Liquid Coating -- 10.3.2 Stabilization by Anchoring with Carbon Nanotubes -- 10.3.3 Stabilization by Capping with Nanoparticles -- 10.3.4 Stabilization by Entrapment in Hydrogels -- 10.3.5 Stabilization by Enzyme Modification -- 10.3.6 Stabilization by Emulsification of Ionic Liquids -- 10.4 Catalytic Activity of Enzymes in Ionic Liquids -- 10.4.1 Biotransformations by Lipases and Esterases -- 10.4.1.1 Esterification and Transesterification Reaction -- 10.4.1.2 Enantioselective Hydrolysis Reaction -- 10.4.1.3 Enantioselective Acylation Reaction -- 10.4.1.4 Kinetic Resolution of Alcohols -- 10.4.2 Reactions Catalyzed by Proteases -- 10.4.3 Carbohydrate Synthesis by Glycosidases -- 10.4.4 Hydrocyanation Reaction by Lyases -- 10.4.5 Biocatalytic Redox Reactions by Oxidoreductases -- 10.4.6 Enzymatic Polymerization Reaction in Ionic Liquids -- 10.5 Stability/Activity Vis-à-vis Solvent Property of Ionic Liquids: A Structure-Activity Relationship (SAR) Analysis -- 10.6 Conclusions -- References -- Chapter 11: Supported Ionic Liquid Membranes: Preparation, Stability and Applications -- 11.1 Introduction. , 11.2 Methods of Preparation and Characterization of Supported Ionic Liquid Membranes -- 11.3 Stability of Supported Ionic Liquid Membranes -- 11.4 Mechanism of Transport Through Supported Ionic Liquid Membranes -- 11.5 Fields of Application of Supported Liquid Membranes -- 11.6 Conclusions -- References -- Chapter 12: Application of Ionic Liquids in Multicomponent Reactions -- 12.1 Introduction -- 12.1.1 Ionic Liquids Based on 1-Butyl-3-methylimidazolium -- 12.1.1.1 1-Butyl-3-methylimidazolium -- 12.1.1.2 1-Butyl-3-methylimidazolium Hexafluorophosphate -- 12.1.1.3 1-n-Butyl-3-methylimidazolium Bromide -- 12.1.1.4 Butyl Methyl Imidazolium Hydroxide -- 12.1.1.5 Other 1-Butyl-3-methylimidazolium-Based Ionic Liquids -- 12.1.2 Other Imidazole-Based Ionic Liquids -- 12.1.2.1 Ionic Liquid-Supported Iodoarenes -- 12.1.2.2 1,3- n -Dibutylimidazolium Bromide -- 12.1.2.3 1- n -Butylimidazolium Tetrafluoroborate -- 12.1.2.4 1-Ethyl-3-methylimidazole Acetate -- 12.1.2.5 An Acidic Ionic Liquid -- 12.1.2.6 Task-Specific Ionic Liquids -- 12.1.2.7 1-Methyl-3-heptyl-imidazolium Tetrafluoroborate -- 12.1.2.8 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Hexafluorophosphate-Bound Acetoacetate -- 12.1.2.9 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Tetrafluoroborate- or Hexafluorophosphate-Bound b -oxo Esters -- 12.1.2.10 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate or Hexafluorophosphate and N -(2-Hydroxyethyl)pyridinium Tetrafluoroborate or Hexafluorophosphate -- 12.1.2.11 PEG-1000-Based Dicationic Acidic Ionic Liquid -- 12.1.2.12 1-Ethyl-3-methylimidazolium ( S)-2-Pyrrolidinecarboxylic Acid Salt -- 12.1.2.13 1-Methyl-3-pentylimidazolium Bromide -- 12.1.2.14 3-Methyl-1-sulfonic Acid Imidazolium Chloride -- 12.1.3 Other Ionic Liquids -- 12.2 Conclusions -- References. , Chapter 13: Ionic Liquids as Binary Mixtures with Selected Molecular Solvents, Reactivity Characterisation and Molecular-Microscopic Properties.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Schlagwort(e): Environmental chemistry ; Environmental Chemistry ; Catalysis ; Pollution prevention ; Analytical chemistry ; Electrochemistry
    Beschreibung / Inhaltsverzeichnis: Preface -- 1. Use of carbon dioxide in polymer synthesis (Annalisa Abdel Azim, Alessandro Cordara, Beatrice Battaglino, Angela Re) -- 2. Biological conversion of carbon dioxide into volatile organic compounds (Ihana Aguiar Severo, Pricila Nass Pinheiro, Karem Rodrigues Vieira, Leila Queiroz Zepka, Eduardo Jacob-Lopes) -- 3. Application of metal organic frameworks in carbon dioxide conversion to methanol (Tamer Zaki) -- 4. Conversion of Carbon Dioxide into Formic Acid (Umesh Fegade and Ganesh Jethave) -- 5. Selective hydrogenation of carbon dioxide into methanol (Pham Minh, Roger, Parkhomenko, L'Hospital, Rego de Vasconcelos, Ro, Mahajan, Chen, Singh, N. Vo) -- 6. Conversion of carbon dioxide into formaldehyde (Trinh Duy Nguyen, Thuan Van Tran, Sharanjit Singh, Pham T. T. Phuong, Long Giang Bach, Sonil Nanda, Dai-Viet N. Vo) -- 7. A Short Review on Production of Syngas via Glycerol Dry Reforming (Sumaiya Zainal Abidin, Asmida Ideris, Nurul Ainirazali, Mazni Ismail)
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (XI, 202 p. 45 illus., 28 illus. in color)
    Ausgabe: 1st ed. 2020
    ISBN: 9783030286385
    Serie: Environmental Chemistry for a Sustainable World 41
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...