GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Highlights ● We developed a pH eddy covariance system to detect a sub-seafloor CO2 release. ● It detected CO2 emission to the water column at injection rates of 5.7–143 kg d − 1. ● It was also sensitive enough to quantify benthic biological CO2 production. ● Close to bubble streams, the kinetics of aqueous CO2 equilibration are important. ● This system can be used to detect, attribute, and quantify seafloor sources of CO2. We detected a controlled release of CO2 (g) with pH eddy covariance. We quantified CO2 emission using measurements of water velocity and pH in the plume of aqueous CO2 generated by the bubble streams, and using model predictions of vertical CO2 dissolution and its dispersion downstream. CO2 (g) was injected 3 m below the floor of the North Sea at rates of 5.7–143 kg d − 1. Instruments were 2.6 m from the center of the bubble streams. In the absence of injected CO2, pH eddy covariance quantified the proton flux due to naturally-occurring benthic organic matter mineralization (equivalent to a dissolved inorganic carbon flux of 7.6 ± 3.3 mmol m − 2 d − 1, s.e., n = 33). At the lowest injection rate, the proton flux due to CO2 dissolution was 20-fold greater than this. To accurately quantify emission, the kinetics of the carbonate system had to be accounted for. At the peak injection rate, 73 ± 13% (s.d.) of the injected CO2 was emitted, but when kinetics were neglected, the calculated CO2 emission was one-fifth of this. Our results demonstrate that geochemical techniques can detect and quantify very small seafloor sources of CO2 and attribute them to natural or abiotic origins.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-30
    Description: Most tropical corals live in symbiosis with Symbiodiniaceae algae whose photosynthetic production of oxygen (O2) may lead to excess O2 in the diffusive boundary layer (DBL) above the coral surface. When flow is low, cilia-induced mixing of the coral DBL is vital to remove excess O2 and prevent oxidative stress that may lead to coral bleaching and mortality. Here, we combined particle image velocimetry using O2-sensitive nanoparticles (sensPIV) with chlorophyll (Chla)-sensitive hyperspectral imaging to visualize the microscale distribution and dynamics of ciliary flows and O2 in the coral DBL in relation to the distribution of Symbiodiniaceae Chla in the tissue of the reef building coral, Porites lutea. Curiously, we found an inverse relation between O2 in the DBL and Chla in the underlying tissue, with patches of high O2 in the DBL above low Chla in the underlying tissue surrounding the polyp mouth areas and pockets of low O2 concentrations in the DBL above high Chla in the coenosarc tissue connecting neighboring polyps. The spatial segregation of Chla and O2 is related to ciliary-induced flows, causing a lateral redistribution of O2 in the DBL. In a 2D transport-reaction model of the coral DBL, we show that the enhanced O2 transport allocates parts of the O2 surplus to areas containing less chla, which minimizes oxidative stress. Cilary flows thus confer a spatially complex mass transfer in the coral DBL, which may play an important role in mitigating oxidative stress and bleaching in corals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Koopmans, D., Meyer, V., Schaap, A., Dewar, M., Farber, P., Long, M., Gros, J., Connelly, D., & Holtappels, M. Detection and quantification of a release of carbon dioxide gas at the seafloor using pH eddy covariance and measurements of plume advection. International Journal of Greenhouse Gas Control, 112, (2021): 103476, https://doi.org/10.1016/j.ijggc.2021.103476.
    Description: We detected a controlled release of CO2 (g) with pH eddy covariance. We quantified CO2 emission using measurements of water velocity and pH in the plume of aqueous CO2 generated by the bubble streams, and using model predictions of vertical CO2 dissolution and its dispersion downstream. CO2 (g) was injected 3 m below the floor of the North Sea at rates of 5.7–143 kg d − 1. Instruments were 2.6 m from the center of the bubble streams. In the absence of injected CO2, pH eddy covariance quantified the proton flux due to naturally-occurring benthic organic matter mineralization (equivalent to a dissolved inorganic carbon flux of 7.6 ± 3.3 mmol m − 2 d − 1, s.e., n = 33). At the lowest injection rate, the proton flux due to CO2 dissolution was 20-fold greater than this. To accurately quantify emission, the kinetics of the carbonate system had to be accounted for. At the peak injection rate, 73 ± 13% (s.d.) of the injected CO2 was emitted, but when kinetics were neglected, the calculated CO2 emission was one-fifth of this. Our results demonstrate that geochemical techniques can detect and quantify very small seafloor sources of CO2 and attribute them to natural or abiotic origins.
    Description: This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 654462 (STEMM-CCS), it also received funding from the Max Planck Society and the Helmholtz Society. MHL was supported by US NSF grant # OCE-1657727.
    Keywords: CO2 vent ; Offshore CCS ; Leakage detection and quantification ; Marine sediment ; Proton flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...