GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2023-03-09
    Description: Meso-scale fluctuations are known to drive large-scale zonal flows in the ocean, a mechanism which is currently missing in non-eddy-resolving ocean models. A closure for meso-scale eddy momentum fluxes is evaluated in a suite of idealised eddying channel models, featuring eddy-driven zonal jets. It is shown how the appearance of zonal jets, which act as mixing barriers for turbulent exchange, and reduced lateral diffusivities are linked in a natural way by implementing mixing of potential vorticity and using a gauge term to insure that no spurious forces are introduced. It appears, therefore, possible to parameterise the appearance of zonal jets and its effect on the ventilation of interior ocean basins in non-eddy-resolving, realistic ocean models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-03-09
    Description: The effects of spatial variations of the thickness diffusivity (K) appropriate to the parameterisation of [Gent, P.R. and McWilliams, J.C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.] are assessed in a coarse resolution global ocean general circulation model. Simulations using three closures yielding different lateral and/or vertical variations in K are compared with a simulation using a constant value. Although the effects of changing K are in general small and all simulations remain biased compared to observations, we find systematic local sensitivities of the simulated circulation on K. In particular, increasing K near the surface in the tropical ocean lifts the depth of the equatorial thermocline, the strength of the Antarctic Circumpolar Current decreases while the subpolar and subtropical gyre transports in the North Atlantic increase by increasing K locally. We also find that the lateral and vertical structure of K given by a recently proposed closure reduces the negative temperature biases in the western North Atlantic by adjusting the pathways of the Gulf Stream and the North Atlantic Current to a more realistic position.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...