GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Cambridge Univ. Pr.
    In:  Journal of Fluid Mechanics, 632 . pp. 457-474.
    Publication Date: 2019-09-23
    Description: The generalized temporal residual mean (TRM-G) framework is reviewed and Illustrated using a numerical Simulation of vertical shear instability. It is shown how TRM-G reveals the physically relevant amount of diapycnal eddy fluxes and implied diapycnal mixing, and how TRM-G relates to the Osborn-Cox relation, which is often used to obtain observational estimates of the diapycnal diffusivity. An exact expression for the diapycnal diffusivity in the TRM-G is given in the presence of molecular diffusion, based on acknowledging and summing Lip an entire hierarchy of eddy buoyancy moments. In this revised form of the Osborn-Cox relation, diapycnal diffusivity is related only to irreversible mixing of buoyancy, since all advective and molecular flux terms are converted to dissipation of variance and higher order moments. An approximate but closed analytical expression can be given for the revised Osborn-Cox relation with the caveat that this closed expression implies unphysical cross-boundary rotational fluxes.It is demonstrated that the original Osborn-Cox relation, in which advective and molecular flux terms are simply neglected, is an approximation to the full form valid to first order. In the numerical simulation the original Osborn-Cox relation holds to a surprisingly good approximation despite large advective fluxes of variance and large lateral inhomogeneity in the turbulent mixing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The bottom pressure torque is known to vanish in the interior ocean but to play a dominant role in the western boundary layer in balancing the planetary vorticity on spatial scales larger than the Rossby radius of deformation. In this study, the appearance of the bottom pressure torque and thus any deviation of wind-driven flow from classical Sverdrup balance is locally related in steady state to non-zero bolus velocity and/or friction, under the assumption that horizontal density advection is small compared to the lifting of isopycnals. To first order approximation, the vortex stretching by the vertical bolus velocity is related to the bottom pressure torque. The bolus vortex stretching becomes a significant term in the barotropic vorticity budget of the western boundary layer and is formally equivalent to bottom friction as in the classical models of the wind-driven gyre circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Ocean Modelling, ELSEVIER SCI LTD, 114, pp. 59-71, ISSN: 1463-5003
    Publication Date: 2017-06-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...