GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Leibniz-Institut für Ostseeforschung Warnemünde | Rostock, Germany
    In:  http://aquaticcommons.org/id/eprint/26030 | 20978 | 2018-10-21 01:18:53 | 26030 | Leibniz-Institut für Ostseeforschung Warnemünde
    Publication Date: 2021-07-24
    Description: ENGLISH ABSTRACT: The article summarizes the hydrographic-hydrochemical conditions in the western and central Baltic Sea in 2017. Based on meteorological conditions, the horizontal and vertical distribution of temperature, salinity, oxygen/hydrogen sulphide and nutrients are described on a seasonal scale. For the southern Baltic Sea area, the “cold sum” of the air temperature of 31.7 Kd in Warnemünde amounted to a mild winter in 2014/15 and ranks as 15th warmest winter since the beginning of the record in 1948. The summer “heat sum” of 159.5 Kd ranks on 28th position of the warmest summers over the past 70 years and is slightly above the long-term average of 153.4 Kd. Based on satellite derived Sea Surface Temperature (SST) 2017 was the eleventh-warmest year since 1990 and with 0.24 K slightly above the long-term SST average. March, April and October - December contributed to the average by their positive anomalies. July and August were characterized by negative anomalies. The anomalies reached maximum values of +2 K and -3 K. The situation in the deep basins of the Baltic Sea was mainly coined by beginning stagnation at bottom-near water depths of the eastern Gotland Basin and ongoing ventilation of the upper part 5 of the deep-water above 150 m as a consequence of weak inflows. For the first time within this phase of intensified inflow activity, starting in 2014, the ventilation of the Farö Deep at the Northern Central Basin was registered at the beginning of the year. In the course of 2017 two weak inflows showing total volumes of 210 km^³ (February) and 188 km^³ (October) were registered. In conclusion, the impact of the observed phase of intensified water exchange processes with subsequent consequences for the biogeochemical cycles is weakening.GERMAN ABSTRACT: Die Arbeit beschreibt die hydrographisch-hydrochemischen Bedingungen in der westlichen und zentralen Ostsee für das Jahr 2017. Basierend auf den meteorologischen Verhältnissen werden die horizontalen und vertikalen Verteilungsmuster von Temperatur, Salzgehalt, Sauerstoff/ Schwefelwasserstoff und Nährstoffen mit saisonaler Auflösung dargestellt. Für den südlichen Ostseeraum ergab sich eine Kältesumme der Lufttemperatur an der Station Warnemünde von 31,7 Kd. Im Vergleich belegt der Winter 2016/17 den 15. Platz der wärmsten Winter seit Beginn der Aufzeichnungen im Jahr 1948 und wird als mild klassifiziert. Mit einer Wärmesumme von 159,5 Kd rangiert der Sommer im Mittelfeld der 70jährigen Datenreihe und reiht sich auf Platz 28 der wärmsten Sommer ein. Das Langzeitmittel liegt bei 153,4 Kd. Auf der Grundlage von satellitengestützten Meeresoberflächentemperaturen (SST) war 2017 das elft- wärmste Jahr seit 1990 und mit 0,24 K etwas über dem langfristigen SST-Mittel. März, April und Oktober - Dezember trugen durch ihre positiven Anomalien zum Durchschnitt bei. Juli und August waren durch negative Anomalien gekennzeichnet. Die Anomalien erreichten Höchstwerte von +2 K und -3 K. Die Situation in den Tiefenbecken der Ostsee war im Wesentlichen geprägt durch bodennah einsetzende Stagnation im östlichen Gotland Becken und Belüftung der mittleren Wassersäule oberhalb 150 m im Zuge kleinerer Einströme. Zu Jahresbeginn wurde das im nördlichen Zentralbecken gelegene Farö Tief erstmals innerhalb der aktuellen Einstromphase belüftet. Im Jahresverlauf 2017 wurden zwei weitere schwache Einströme mit Volumina zwischen 210 km³ und 188 km³ im Februar sowie Oktober registriert. Zusammenfassend kann gesagt werden, dass die Auswirkungen der seit 2014 beobachten Phase von verstärkten Wasseraustauschprozessen mit entsprechenden Konsequenzen für die biogeochemischen Kreisläufe abklingen.
    Keywords: Environment ; Oceanography ; Western Baltic Sea ; Central Baltic Sea ; temperature ; salinity ; oxygen/hydrogen sulphide ; nutrients ; Baltic Sea Monitoring Programme
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 97
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-22
    Description: Environmental context: Halocarbons are trace gases important in atmospheric ozone chemistry whose biogenic production – among other factors – depends on light-induced stress of marine algae. Several studies have confirmed this effect in laboratory experiments but knowledge in natural systems remains sparse. In mesocosm experiments, which are a link between field and laboratory studies, we observed that the influence of natural levels of ultraviolet radiation on halocarbon dynamics in the marine surface waters was either insignificant or concealed by the complex interactions in the natural systems. Abstract: The aim of the present study was to evaluate the influence of different light quality, especially ultraviolet radiation (UVR), on the dynamics of volatile halogenated organic compounds (VHOCs) at the sea surface. Short term experiments were conducted with floating gas-tight mesocosms of different optical qualities. Six halocarbons (CH3I, CHCl3, CH2Br2, CH2ClI, CHBr3 and CH2I2), known to be produced by phytoplankton, together with a variety of biological and environmental variables were measured in the coastal southern Baltic Sea and in the Raunefjord (North Sea). These experiments showed that ambient levels of UVR have no significant influence on VHOC dynamics in the natural systems. We attribute it to the low radiation doses that phytoplankton cells receive in a normal turbulent surface mixed layer. The VHOC concentrations were influenced by their production and removal processes, but they were not correlated with biological or environmental parameters investigated. Diatoms were most likely the dominant biogenic source of VHOCs in the Baltic Sea experiment, whereas in the Raunefjord experiment macroalgae probably contributed strongly to the production of VHOCs. The variable stable carbon isotope signatures (δ13C values) of bromoform (CHBr3) also indicate that different autotrophic organisms were responsible for CHBr3 production in the two coastal environments. In the Raunefjord, despite strong daily variations in CHBr3 concentration, the carbon isotopic ratio was fairly stable with a mean value of –26 ‰. During the declining spring phytoplankton bloom in the Baltic Sea, the δ13C values of CHBr3 were enriched in 13C and showed noticeable diurnal changes (–12 ‰ ± 4). These results show that isotope signature analysis is a useful tool to study both the origin and dynamics of VHOCs in natural systems.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    CSIRO
    In:  Environmental Chemistry, 6 (6). pp. 495-507.
    Publication Date: 2020-07-31
    Description: In order to investigate temporal changes in combination with the influence of different environmental parameters on the concentration and the composition of volatile organic compounds (VOCs), seawater samples from the coastal Baltic Sea were weekly measured from January to November 2008. In most cases, concentrations of VOCs varied seasonally and were influenced by changes in temperature and light conditions or biological species composition. A nearly two-fold increase in the mean concentration was noticed for isoprene, iodomethane and bromoform in the season with higher water temperature. The strongest flux of dimethylsulfide to the atmosphere appeared in May and July. Its high production was related to the presence of Prymnesiophyceae. The highest concentrations of diiodomethane and chloroiodomethane were observed with the spring and autumn phytoplankton bloom; their distribution was strongly controlled by light intensity. Flux calculations showed that coastal regions can affect local atmosphere, especially during biologically active periods. The strongest emission of bromoform and iodomethane was in July and August. The data presented here highlights the need to include seasonal cycles when calculating the global budgets and modelling sea-air fluxes of trace gases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-22
    Description: Environmental context: Once released to the atmosphere, halocarbons are involved in key chemical reactions. Stable carbon isotope measurements of halocarbons can provide valuable information on their sources and fate in the atmosphere. Here, we report δ13C values of 13 polyhalomethanes released from brown algae, which may provide a basis for inferring their sources and fate in future studies. Abstract: Halocarbons are important vectors of reactive halogens to the atmosphere, where the latter participate in several key chemical processes. An improved understanding of the biogeochemical controls of the production–destruction equilibrium on halocarbons is of vital importance to address potential future changes in their fluxes to the atmosphere. Carbon stable isotope ratios of halocarbons could provide valuable additional information on their sources and fate that cannot be derived from mixing ratios alone. We determined the δ13C values of 13 polyhalomethanes from three brown algae species (Laminaria digitata, Fucus vesiculosus, Fucus serratus) and one seagrass species (Zostera noltii). The δ13C values were determined in laboratory incubations under variable environmental conditions of light, water levels (to simulate tidal events) and addition of hydrogen peroxide (H2O2). The δ13C values of the polyhalomethanes ranged from –42.2 ‰ (±3.5 s.d.) for CHCl3 to 6.9 ‰ (±4.5) for CHI2Br and showed a systematic effect of the halogen substituents that could empirically be described in terms of linear free energy relationships. We further observed an enrichment in the δ13C of the polyhalomethanes with decreasing polyhalomethane yield that is attributed to the competing formation of halogenated ketones. Though variable, the isotopic composition of polyhalomethanes may provide useful additional information to discriminate between marine polyhalomethane sources.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...