GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-24
    Description: In a bid to further understand processes that influence deep-sea epibenthic megafauna, which fulfil critical roles in the global carbon cycle, we present data from the Arctic Long-Term Ecological Research observatory HAUSGARTEN, in the Fram Strait, showing significant temporal changes in total biomass of 3 key organisms (Kolga hyalina, Elpidia heckeri and Mohnia spp.) at stations N3, HG-IV and S3 during repeated deployments over a time series spanning 2004−2015. Overall, all species investigated displayed a similar reproduction/recruitment cycle, with increasing mean mass per individual leading to decreases in abundance, and vice versa. However, there were 3 ‘events’ that deviated from this pattern. The first was a mass reproduction event of E. heckeri at HG-IV from 2012 onwards, likely due to an increased carrying capacity. The second event involved migration of K. hyalina from HG-IV between 2004−2007, with a return in 2011. This coincided with a shift in the composition of the particle flux at the station. The final event was a mass migration of K. hyalina to N3 between 2004 (0 ind. m−2) and 2007 (4.765 ± 0.084 ind. m−2). This event coincided with a 4-fold increase in phytodetrital food availability at the seafloor at N3. Our results highlight the importance of time-series studies to ascertain the key factors that influence epibenthic megafaunal communities. It also highlights the fact that more needs to be done in understanding the life history of these organisms, as this understanding is, so far, widely lacking.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 10, pp. 3479-3492, ISSN: 1726-4170
    Publication Date: 2014-10-07
    Description: Epibenthic megafauna play an important role in the deep-sea environment and contribute significantly to benthic biomass, but their population dynamics are still understudied. We used a towed deep-sea camera system to assess the population densities of epibenthic megafauna in 2002, 2007, and 2012 at the shallowest station (HG I, ∼1300 m) of the deep-sea observatory HAUSGARTEN, in the eastern Fram Strait. Our results indicate that the overall density of megafauna was significantly lower in 2007 than in 2002, but was significantly higher in 2012, resulting in overall greater megafaunal density in 2012. Different species showed different patterns in population density, but the relative proportions of predator/scavengers and suspension-feeding individuals were both higher in 2012. Variations in megafaunal densities and proportions are likely due to variation in food input to the sea floor, which decreased slightly in the years preceding 2007 and was greatly elevated in the years preceding 2012. Both average evenness and diversity increased over the time period studied, which indicates that HG I may be food-limited and subject to bottom-up control. The community of HG I may be unique in its response to elevated food input, which resulted in higher evenness and diversity in 2012.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-23
    Description: One of the recently recognised stressors in Arctic ecosystems concerns plastic litter. In this study, juvenile polar cod (Boreogadus saida) were investigated for the presence of plastics in their stomachs. Polar cod is considered a key species in the Arctic ecosystem. The fish were collected both directly from underneath the sea ice in the Eurasian Basin and in open waters around Svalbard. We analysed the stomachs of 72 individuals under a stereo microscope. Two stomachs contained non-fibrous microplastic particles. According to µFTIR analysis, the particles consisted of epoxy resin and a mix of Kaolin with polymethylmethacrylate (PMMA). Fibrous objects were excluded from this analysis to avoid bias due to contamination with airborne micro-fibres. A systematic investigation of the risk for secondary micro-fibre contamination during analytical procedures showed that precautionary measures in all procedural steps are critical. Based on the two non-fibrous objects found in polar cod stomachs, our results show that ingestion of microplastic particles by this ecologically important fish species is possible. With increasing human activity, plastic ingestion may act as an increasing stressor on polar cod in combination with ocean warming and sea-ice decline in peripheral regions of the Arctic Ocean. To fully assess the significance of this stressor and its spatial and temporal variability, future studies must apply a rigorous approach to avoid secondary pollution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 556, pp. 45-57, ISSN: 0171-8630
    Publication Date: 2017-01-31
    Description: Stones released by melting icebergs are called dropstones, and these stones constitute island-like hard-bottom habitats at high latitudes. In 2012, dropstone megafauna in the HAUSGARTEN observatory in the Fram Strait was sampled photographically. We tested the hypothesis that dropstones would have the same species distribution patterns as terrestrial islands, using 5 patterns commonly found in the classical island literature. Higher richness, diversity, and abundance of fauna occurred on larger stones and on stones near a deep-water rocky reef. These patterns can be explained by the greater surface area of larger stones, the exposure of larger stones to faster current higher in the benthic boundary layer, and increased larval supply from the rocky reef. Some pairs of morphotypes (12 pairs out of 56 morphotypes and 1540 possible pairs) co-occurred less often than expected by chance. While similar patterns have been attributed to interspecific competition in the classical island literature, we offer alternative mechanisms for dropstones. Non-random co-occurrence on dropstones may be explained by larval dispersal. Dropstone fauna had an overdispersed (clumped) distribution, so pairs of morphotypes may have negative non-random co-occurrence simply because short larval life and limited dispersal ability prevent them from having randomly overlapping distributions. In addition, we found 8 morphotype pairs that co-occurred more often than expected by chance because of epibiontism. The patterns found in dropstone communities resemble terrestrial islands, but different mechanisms may be responsible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-27
    Description: Although recent reports indicate that anthropogenic waste has made it to the remotest parts of our oceans, there is still only limited information about its spread, especially in polar seas. Here, we present litter densities recorded during ship- and helicopter-based observer surveys in the Barents Sea and Fram Strait (Arctic). Thirty-one items were recorded in total, 23 from helicopter and eight from research vessel transects. Litter quantities ranged between 0 and 0.216 items km−1 with a mean of 0.001 (±SEM 0.005) items km−1. All of the floating objects observed were plastic items. Litter densities were slightly higher in the Fram Strait (0.006 items km−1) compared with the Barents Sea (0.004 items km−1). More litter was recorded during helicopter-based surveys than during ship-based surveys (0.006 and 0.004 items km−1, respectively). When comparing with the few available data with the same unit (items km−1 transect), the densities found herein are slightly higher than those from Antarctica but substantially lower than those from temperate waters. However, since anthropogenic activities in the Fram Strait are expanding because of sea ice shrinkage, and since currents from the North Atlantic carry a continuous supply of litter to the north, this problem is likely to worsen in years to come unless serious mitigating actions are taken to reduce the amounts of litter entering the oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 10, pp. 3359-3374, ISSN: 1726-4170
    Publication Date: 2014-09-17
    Description: During a survey of the H°akon Mosby mud volcano (HMMV), located on the Bear Island fan in the southwest Barents Sea at �1250m water depth, different habitats inside the volcano caldera and outside it were hotographed using a towed camera platform, an Ocean Floor Observation System (OFOS). Three transects were performed across the caldera and one outside, in the background area, each transect was �2 km in length. We compared the density, taxa richness and diversity of nonsymbiotrophic megafauna in areas inside the volcano caldera with different bacterial mat and pogonophoran tubeworm cover. Significant variations in megafaunal composition, density and distribution were found between considered areas. Total megafaunal density was highest in areas of dense pogonophoran populations (mean 52.9 ind.m−2) followed by areas of plain light-coloured sediment that were devoid of bacterial mats and tube worms (mean 37.7 ind.m−2). The lowest densities were recorded in areas of dense bacterial mats (mean �1.4 ind.m−2). Five taxa contributed to most of the observed variation: the ophiuroid Ophiocten gracilis, lysianassid amphipods, the pycnogonid Nymphon macronix, the caprellid Metacaprella horrida and the fish Lycodes squamiventer. In agreement with previous studies, three zones within the HMMV caldera were distinguished, based on different habitats and megafaunal composition: “bacterial mats”, “pogonophoran fields” and “plain light-coloured sediments”. The zones were arranged almost concentrically around the central part of the caldera that was devoid of visible megafauna. The total number of taxa showed little variation inside (24 spp.) and outside the caldera (26 spp.). The density, diversity and composition of megafauna varied substantially between plain lightcoloured sediment areas inside the caldera and the HMMV background. Megafaunal density was lower in the background (mean 25.3 ind.m−2) compared to areas of plain light-coloured sediments inside the caldera. So the effect of the mud-volcano environment on benthic communities is expressed in increasing of biomass, changing of taxa composition and proportions of most taxonomic groups.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...