GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    JOHN WILEY & SONS LTD
    In:  EPIC3International Journal of Climatology, JOHN WILEY & SONS LTD, 41(4), pp. 2226-2238, ISSN: 0899-8418
    Publication Date: 2021-05-25
    Description: Cyclones with tropical characteristics called medicanes (“Mediterranean Hur-ricanes”) eventually develop in the Mediterranean Sea. They have large harm-ful potential and a correct simulation of their evolution in climate projections is important for an adequate adaptation to climate change. Different studies suggest that ocean–atmosphere coupled models provide a better representation of medicanes, especially in terms of intensity and frequency. In this work, we use the regionally-coupled model ROM to study how air-sea interactions affect the evolution of medicanes in future climate projections. We find that under the RCP8.5 scenario our climate simulations show an overall frequency decrease which is more pronounced in the coupled than in the uncoupled con-figuration, whereas the intensity displays a different behaviour depending on the coupling. In the coupled run, the relative frequency of higher-intensity medicanes increases, but this is not found in the uncoupled simulation. Also, this study indicates that the coupled model simulates better the summer mini-mum in the occurrence of medicanes, avoiding the reproduction of unrealisti-cally intense events that can be found in summer in the uncoupled model.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    CLIVAR
    In:  EPIC3CLIVAR Open Science Conference: Charting the course for climate and ocean research, Qingdao, China, 2016-09-18-2016-09-25Qingdao, China, CLIVAR
    Publication Date: 2017-01-25
    Description: Ocean model biases such as the North West corner cold bias connected to the location of the Gulf Stream path, the warm bias in upwelling zones, the warm bias in the Southern Ocean, and model drift like the deep ocean warm bias which tends to peak in around 800 to 1000 m depth in the Atlantic Ocean are issues common among state-of-the-art ocean models. These issues are often amplified when the ocean model is coupled to an atmosphere model to perform climate simulations. Furthermore, unrealistic freezing of the Labrador Sea is an issue in various climate models. With the unstructured mesh approach in our Finite Element Sea ice Ocean Model (FESOM) we are able to systematically investigate the benefits of local refinement of the ocean model grid both in an uncoupled set-up (sea-ice ocean only) as well as in a fully coupled climate model (atmosphere- land-sea ice-ocean). While the horizontal ocean model resolution is 25 km on average in the finer grids, we refine the grids in some key areas to up to 5 km. Therefore we can explicitly resolve ocean eddies and simulate eddy-mean flow interactions in these key areas. The atmosphere-land component of our AWI-CM (Alfred Wegener Institute Climate Model) is ECHAM6-JSBACH developed at the Max-Planck-Institute for Meteorology in Hamburg, Germany. Here we present results of century-long uncoupled and coupled simulations on ocean model grids with different local refinements while keeping the atmosphere resolution constant in the coupled simulations. Results indicate that high horizontal resolutions in key regions such as the Gulf Stream / North Atlantic Current area or the Agulhas Stream can reduce biases such as the North West corner cold bias and the deep ocean model drift.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-30
    Description: Wind energy is susceptible to global climate change because it could alter the wind patterns. Then, improvement of our knowledge of wind field variability is crucial to optimize the use of wind resources in a given region. Here, we quantify the effects of climate change on the surface wind speed field over the Iberian Peninsula and Balearic Islands using an ensemble of four regional climate models driven by a global climate model. Regions of the Iberian Peninsula with coherent temporal variability in wind speed in each of the models are identified and analysed using cluster analysis. These regions are continuous in each model and exhibit a high degree of overlap across the models. The models forced by the European Reanalysis Interim (ERA-Interim) reanalysis are validated against the European Climate Assessment and Dataset wind. We find that regional models are able to simulate with reasonable skill the spatial distribution of wind speed at 10 m in the Iberian Peninsula, identifying areas with common wind variability. Under the Special Report on Emissions Scenarios (SRES) A1B climate change scenario, the wind speed in the identified regions for 2031–2050 is up to 5% less than during the 1980–1999 control period for all models. The models also agree on the time evolution of spatially averaged wind speed in each region, showing a negative trend for all of them. These tendencies depend on the region and are significant at p = 5% or slightly more for annual trends, while seasonal trends are not significant in most of the regions and seasons. Copyright © 2015 John Wiley & Sons, Ltd.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...