GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (2)
Document type
Publisher
Years
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We use a transgenic mouse model system to elucidate the regulatory regions within the human cholinergic gene locus responsible for vesicular acetylcholine transporter gene expression in vivo. In this report we characterized two transgenes for their ability to confer cholinergic-specific expression of the encoded vesicular acetylcholine transporter. An 11.2 kb transgene (named hV11.2) that spanned from about 5 kb upstream of the start of vesicular acetylcholine transporter translation down to the first choline acetyltransferase coding exon gave expression in the somatomotor neurons and a subpopulation of cholinergic neurons in the medial habenular nucleus. The second transgene (named hV6.7), a 5-prime truncated version of hV11.2 that was devoid of 4.5 kb of gene-regulatory sequences completely lacked vesicular acetylcholine transporter expression in vivo. Our data indicate that vesicular acetylcholine transporter expression in somatomotor neurons and in the medial habenular nucleus is uniquely specified within the cholinergic gene locus, and separable from cholinergic expression elsewhere. The identification of these two subdivisions of the cholinergic nervous system suggests that other cholinergic neurons in the CNS and PNS are similarly regulated by additional discrete domains within the cholinergic gene locus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Increased kynurenine pathway metabolism has been implicated in the aetiology of lentiviral encephalopathy. Indoleamine-2,3-dioxygenase (IDO) initiates the increased production of kynurenine pathway metabolites like quinolinic acid (QUIN). QUIN itself is elevated in AIDS-diseased monkey and human brain parenchyma and cerebrospinal fluid at levels excitotoxic for neurons in vitro. This study investigates the cellular origin of IDO biosynthesis in the brain of rhesus monkeys infected with simian immunodeficiency virus (SIV) and explores the effects of CNS-permeant antiretroviral treatment. IDO transcript and protein were absent from the brain of non-infected and SIV-infected asymptomatic monkeys. IDO biosynthesis was induced in the brain of monkeys exhibiting AIDS. Nodule and multinucleated giant cell-forming macrophages were the main sources of IDO synthesis. Treatment with the lipophilic 6-chloro-2′,3′-dideoxyguanosine suppressed IDO expression in the brain of AIDS-diseased monkeys. The effectiveness of this treatment was confirmed by the reduction of virus burden and SIV-induced perivascular infiltrates, mononuclear nodules and multinucleated giant cells. Our data demonstrate that brain IDO biosynthesis is induced in a subset of monocyte-derived cells, depends on viral burden and is susceptible to antiretroviral treatment. Thus, IDO induction is associated with reversible overt inflammatory events localized to areas of active viral replication in the SIV-infected brain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...