GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • Blackwell Science Ltd  (1)
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Climate variations over the Northern Hemisphere are to a substantial proportion associated with the North Atlantic Oscillation (NAO). Recently, many studies revealed the impacts of the NAO on the dynamics of organisms in different ecosystems but the results in the single studies were inconsistent. Here, we used meta-analysis techniques for a quantitative synthesis of results. We tested the influence of the NAO on the timing of life history events, on biomass of organisms, and on biomass of different trophic levels. We found a clear NAO signature in freshwater, marine, and terrestrial ecosystems. The response of life history events to the NAO was similar in all environments but less pronounced at higher latitudes. The magnitude of the biomass response was significantly related to the NAO, either positively in aquatic or negatively in terrestrial ecosystems. The response depended on longitude, the effect being less pronounced in Eastern Europe. The results stressed that a meta-analysis is a valuable tool in the field of climate-driven ecosystem responses and can identify more general ecological responses than single studies. We recommend the inclusion of nonsignificant results in order to archive an objective view of the strength of NAO and climate impacts in general.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Benthic–pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic–pelagic coupling processes and their potential sensitivity to three anthropogenic pressures – climate change, nutrient loading, and fishing – using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic–pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic–pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-27
    Description: While environmental science, and ecology in particular, is working to provide better understanding to base sustainable decisions on, the way scientific understanding is developed can at times be detrimental to this cause. Locked-in debates are often unnecessarily polarised and can compromise any common goals of the opposing camps. The present paper is inspired by a resolved debate from an unrelated field of psychology where Nobel laureate David Kahneman and Garry Klein turned what seemed to be a locked-in debate into a constructive process for their fields. The present paper is also motivated by previous discourses regarding the role of thresholds in natural systems for management and governance, but its scope of analysis targets the scientific process within complex social-ecological systems in general. We identified four features of environmental science that appear to predispose for locked-in debates: (1) The strongly context-dependent behaviour of ecological systems. (2) The dominant role of single hypothesis testing. (3) The high prominence given to theory demonstration compared investigation. (4) The effect of urgent demands to inform and steer policy. This fertile ground is further cultivated by human psychological aspects as well as the structure of funding and publication systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...