GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
  • Journal of Geophysical Research-Biogeosciences  (1)
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 39 (1992), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The sedimentology, mineralogy and pore fluid chemistry of seven cores from the Holocene sediments of Florida Bay were studied to determine the physical processes and diagenetic reactions affecting the sediments. The cores were taken in a transect from a shallow mudbank onto a small adjacent island, Jimmy Key. Steady state models of pore fluid chemistry are used to estimate the rates of various reactions.In the mudbank sediments, little carbonate mineral diagenesis is taking place. No change in sediment mineralogy is detectable and pore water profiles of Ca2+, Mg2+ and Sr2+ show only minor variation. Chloride concentrations indicate substantial biological mixing of seawater from the bay into the sediments in one of the cores. Pore water analyses of sulphate and alkalinity show only a low degree of sulphate depletion and a decreasing extent of sulphate reduction downcore. Models of sulphate reduction in the mudbank show that there is substantial chemical exchange between the sediment pore fluids and water from the bay probably as a result of bio-irrigation. The sulphate and alkalinity data also suggest that the underlying Pleistocene rocks contain water of near normal seawater composition.Stratigraphic analysis and δ13C analyses of the organic carbon in the sediments of the island cores show that the sediments were primarily deposited in a subtidal mudbank setting; only the upper 20–30 cm is supratidal in origin. Nevertheless, island formation had a significant effect on pore fluid chemistry and the types of diagenetic reactions throughout the sediment column. Chloride in the sediment pore fluids is more than twice the normal seawater concentrations over most of the depth of the cores. The constant, elevated chloride concentrations indicate that hypersaline fluids which formed in ponds on the island are advected downward through the sediments. Models of the chloride profiles yield an estimate of 2·5 cm yr−1 as a minimum advective velocity. Changes in pore water chemistry with depth are interpreted as indicating the following sequence of reactions: (1) minor high-Mg calcite dissolution and low-Mg calcite precipitation, from 0 to 35 cm; (2) Ca- or Mg-sulphate dissolution and low-Mg calcite precipitation, from 5 to 35 cm; (3) dolomite or magnesite precipitation together with sulphate reduction, from 35 to 55 cm; and (4) little reaction below 55 cm. In addition, one or more as yet unidentified reactions must be taking place from 5 to 55 cm depth as an imbalance in possible sources and sinks of alkalinity is observed. The imbalance could be explained if chloride is not completely conservative. Despite the pore fluid chemical evidence for diagenetic reactions involving carbonate minerals, no changes in sediment mineralogy were detected in X-ray diffraction analyses, probably because of the comparatively young age of the island.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 35 (1988), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Dolomitized intervals of a core from San Salvador Island, Bahamas, exhibit variations of two texturally and geochemically distinct end-members. In the Pliocene section of the dolomitized interval, the two end-members alternate in a pattern that may reflect originally and/or diagenetically modified depositional facies. Formerly mud-free intervals, locally capped by exposure surfaces are massive crystalline, mimetic dolomites (CM). Muddier sediments are replaced by friable microsucrosic dolomites (MS). CM and MS dolomites also differ in porosity (〈 10% vs 〉 30%), permeability (〈 10 md vs 〉 100 md), mol% MgCO3 (44–9 vs 47–7) mol%), oxygen isotopic composition (1–7 vs 2–7‰) and strontium content (241 vs 106 ppm).These data indicate that depositional and diagenetic fabric are the principal controls governing the distribution of dolomite types. Differences in texture and geochemistry are suggested as arising through differential rates of crystallization produced as a result of variations in permeability and reactivity of the precursor sediments and rocks.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research- Biogeosciences 125(2), (2020): e2019JG005276, doi:10.1029/2019JG005276.
    Description: A chemoautotrophy maximum is present in many anoxic basins at the sulfidic layer's upper boundary, but the factors controlling this feature are poorly understood. In 13 of 31 cruises to the Cariaco Basin, particulate organic carbon (POC) was enriched in 13C (δ13CPOC as high as −16‰) within the oxic/sulfidic transition compared to photic zone values (−23 to −26‰). During “heavy” cruises, fluxes of O2 and [NO3− + NO2−] to the oxic/sulfidic interface were significantly lower than during “light” cruises. Cruises with isotopically heavy POC were more common between 2013 and 2015 when suspended particles below the photic zone tended to be nitrogen rich compared to later cruises. Within the chemoautotrophic layer, nitrogen‐rich particles (molar ratio C/N〈 10) were more likely to be 13C‐enriched than nitrogen‐poor particles, implying that these inventories were dominated by living cells and fresh detritus rather than laterally transported or extensively decomposed detritus. During heavy cruises, 13C enrichments persisted to 1,300 m, providing the first evidence of downward transport of chemoautotrophically produced POC. Dissolved inorganic carbon assimilation during heavy cruises (n = 3) was faster and occurred deeper than during light cruises (n = 2). Metagenomics data from the chemoautotrophic layer during two cruises support prevalence of microorganisms carrying RuBisCO form II genes, which encode a carbon fixation enzyme that discriminates less against heavy isotopes than most other carbon fixation enzymes, and metatranscriptomics data indicate that higher expression of form II RuBisCO genes during the heavy cruises at depths where essential reactants coexist are responsible for the isotopically heavier POC.
    Description: We thank the captain and crew of the B/O Hermano Gines and the staff of Estación de Investigaciones Marinas, Fundación de la Salle de Ciencias Naturales, Margarita Island, Venezuela, for their field and laboratory assistance. We are also indebted to the many students, colleagues, and technicians who have participated in this project, in particular, L. Medina Faull for contour plots, E. Tappa (USC) for POC and δ13CPOC data measured in Robert Thunell's lab, and K. Fanning and K. Buck and W. Abbott (USF) for nutrient data. Digna‐Rueda‐Roa, Laura Lorenzoni, and Matt Biddle assisted greatly in getting the data into a format suitable for submission to the BCO‐DMO database. We are also grateful to two anonymous reviewers for their insightful comments. This research was supported by grants from NSF (OCE‐1259110 awarded to M. I. S. and G. T. T.; OCE‐1258991 to R. C. T.; OCE‐0326268, OCE‐0963028, OCE‐1259043, and OCE‐1649626 to F. M. K.; and OCE‐1336082 and OCE‐1335436 awarded to V. P. E. and G. T. T., respectively), from Venezuela's FONACIT (2000001702 and 2011000353 to Y. A.), and a WHOI subaward A101259 to M. G. P. Biological and Chemical Oceanography Data Management Office Metadata landing page for the Cariaco Time series Niskin bottle data is/https://www.bco‐dmo.org/dataset/3093. For the data from our biogeochemistry cruises the BCO‐DMO Metadata landing page is https://ww.bco‐dmo.org/dataset/3120 and for the Time series CTD data is https://www.bco‐dmo.org/dataset/3092. δ13CDIC data are presented in Table S1. Metagenome and metatranscriptome data are available from SRA (accession number PRJNA544741). δ13CPOC data are available at https://doi.org/10.6084/m9.figshare.8214470.v1.
    Description: 2020-07-30
    Keywords: Cariaco Basin ; Chemoautotrophy ; Metagenomics ; Carbon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...