GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GSA (Geological Society of America)  (11)
  • GEOMAR  (3)
  • Blackwell Publishing Ltd  (2)
Document type
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 124 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Seismic refraction velocity data from the acoustic basement (called layer 2A) have been compiled for different mid-ocean ridges. The data from post-1970 studies show a strong correlation between velocity and basement age. Importantly, velocities double in less than 10 Myr for all ridges, but for older crust, up to 160 Myr in age, velocities do not increase significantly.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 126 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Upper-mantle structure of Indian Ocean spreading ridges was investigated by track segments of Geosat/ERM altimeter measurements. To determine the upper-mantle structure of the Earth's gravity field, a low-degree and -order spherical harmonic representation of the geoid was removed. A test of several reference fields suggested that a degree 2–25 field with gradually rolled off coefficients (Sandwell & Renkin 1988) offers an adequate representation of the long-wavelength geoidal undulations.Filtered profiles of three individual ridge segments display a strong asymmetry in geoid versus age trends of conjugated rift flanks. The unusually low geoid slopes on one flank can perhaps best be explained as a dynamic or thermal phenomenon reflecting a flow connection between a neighbouring off-axis hotspot plume and the ridge axis, while the other flank simply cools as it spreads away from the axial zone. It seems reasonable to hypothesize that the Southwest Indian Ridge and the Southeast Indian Ridge act as sinks for plumes beneath Agulhas Plateau and Kerguelen Islands, respectively. The Carlsberg Ridge data suggest that the Réunion hotspot contaminated northwestern African lithosphere until 15 Ma. Moreover, symmetric flattening of geoid versus age trends of conjugated ridge flanks offers evidence that plume events affect geoid versus age trends
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GSA (Geological Society of America)
    In:  Geosphere, 14 (2). pp. 395-418.
    Publication Date: 2021-03-19
    Description: The subducting oceanic lithosphere may carry a large amount of chemically bound water into the deep Earth interior, returning water to the mantle, facilitating melting, and hence keeping the mantle mobile and, in turn, nurturing plate tectonics. Bending-related faulting in the trench–outer rise region prior to subduction has been recognized to be an important process, promoting the return flux of water into the mantle. Extensional faults in the trench–outer rise are opening pathways into the lithosphere, supporting hydration of the lithosphere, including alteration of dry peridotite to water-rich serpentine. In this paper, we review and summarize recent work suggesting that bend faulting is indeed a key process in the global water cycle, albeit not yet well understood. Two features are found in a worldwide compilation of tomographic velocity models derived from wide-angle seismic data, indicating that oceanic lithosphere is strongly modified when approaching a deep-sea trench: (1) seismic velocities in both the lower crust and upper mantle are significantly reduced compared to the structure found in the vicinity of mid-ocean ridges and in mature crust away from subduction zones; and (2) profiles shot perpendicular to the trench show both crustal and upper mantle velocities decreasing systematically approaching the trench axis, highlighting an evolutionary process because velocity reduction is related to deformation, alteration, and hydration. P-wave velocity anomalies suggest that mantle serpentinization at trenches is a global feature of all subducting oceanic plates older than 10–15 Ma. Yet, the degree of serpentinization in the uppermost mantle is not firmly established, but may range from 〈4% to as much as 20%, assuming that velocity reduction is solely due to hydration. A case study from the Nicaraguan trench argues that the ratio between P-wave and S-wave velocity (Vp/Vs) is a key parameter in addressing the amount of hydration. In the crust, the Vp/Vs ratio increases from 〈1.8 away from the trench to 〉1.9 in the trench, supporting the development of water-filled cracks where bend faulting occurs. In the mantle, the Vp/Vs ratio increases from ∼1.75 in the outer rise to values of 〉1.8 at the trench, indicating the increasing intensity of serpentinization.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-24
    Description: Splay faults, large thrust faults emerging from the plate boundary to the seafloor in subduction zones, are considered to enhance tsunami generation by transferring slip from the very shallow dip of the megathrust onto steeper faults, thus increasing vertical displacement of the seafloor. These structures are predominantly found offshore, and are therefore difficult to detect in seismicity studies, as most seismometer stations are located onshore. The Mw (moment magnitude) 8.8 Maule earthquake on 27 February 2010 affected ∼500 km of the central Chilean margin. In response to this event, a network of 30 ocean-bottom seismometers was deployed for a 3 month period north of the main shock where the highest coseismic slip rates were detected, and combined with land station data providing onshore as well as offshore coverage of the northern part of the rupture area. The aftershock seismicity in the northern part of the survey area reveals, for the first time, a well-resolved seismically active splay fault in the submarine forearc. Application of critical taper theory analysis suggests that in the northernmost part of the rupture zone, coseismic slip likely propagated along the splay fault and not the subduction thrust fault, while in the southern part it propagated along the subduction thrust fault and not the splay fault. The possibility of splay faults being activated in some segments of the rupture zone but not others should be considered when modeling slip distributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-24
    Description: High-temperature (〉300 °C) off-axis hydrothermal systems found along the slow-spreading Mid-Atlantic Ridge are apparently consistently located at outcropping fault zones. While preferential flow of hot fluids along highly permeable, fractured rocks seems intuitive, such efficient flow inevitably leads to the entrainment of cold ambient seawater. The temperature drop this should cause is difficult to reconcile with the observed high-temperature black smoker activity and formation of associated massive sulfide ore deposits. Here we combine newly acquired seismological data from the high-temperature, off-axis Logatchev 1 hydrothermal field (LHF1) with numerical modeling of hydrothermal flow to solve this apparent contradiction. The data show intense off-axis seismicity with focal mechanisms suggesting a fault zone dipping from LHF1 toward the ridge axis. Our simulations predict high-temperature venting at LHF1 only for a limited range of fault widths and permeability contrasts, expressed as the fault's relative transmissibility (the product of the two parameters). The relative transmissibility must be sufficient to "capture" a rising hydrothermal plume and redirect it toward LHF1 but low enough to prevent extensive mixing with ambient cold fluids. Furthermore, the temperature drop associated with any high permeability zone in heterogeneous crust may explain why a significant part of hydrothermal discharge along slow-spreading ridges occurs at low temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-05
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    GEOMAR
    Publication Date: 2023-11-07
    Description: TRANSFORMERS II, MARIA S. MERIAN 122 Ponta Delgada – Halifax, 19. Oktober bis 9. November 2023 2. Wochenbericht (23.10.- 29.10.2023)
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    GEOMAR
    Publication Date: 2023-11-07
    Description: TRANSFORMERS II, MARIA S. MERIAN 122 Ponta Delgada – Halifax, 19. Oktober bis 9. November 2023 1. Wochenbericht (19.10.- 22.10.2023)
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    GEOMAR
    Publication Date: 2023-11-07
    Description: TRANSFORMERS II, MARIA S. MERIAN 122, Ponta Delgada – Halifax, 19. Oktober bis 9. November 2023 3. Wochenbericht (30.10.- 05.11.2023)
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: The Tyrrhenian Basin is a region created by Neogene extensional tectonics related to slab rollback of the east-southeast–migrating Apennine subduction system, commonly believed to be actively underthrusting the Calabrian arc. A compilation of 〉12,000 km of multichannel seismic profiles, much of them recently collected or reprocessed, provided closer scrutiny and the mapping of previously undetected large compressive structures along the Tyrrhenian margin. This new finding suggests that Tyrrhenian Basin extension recently ceased. The ongoing compressional reorganization of the basin indicates a change of the regional stress field in the area, confirming that slab rollback is no longer a driving mechanism for regional kinematics, now dominated by the Africa-Eurasia lithospheric collision.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...