GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Blackwell Publishing Ltd  (2)
  • Copernicus Publications (EGU)  (2)
  • Wiley  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 53 (2005), S. 0 
    ISSN: 1574-6941
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Exopolymeric substances (EPS) isolated from a pure culture of the marine bacterium Marinobacter sp. and the marine diatom Skeletonema costatum (axenic) were partially purified, chemically characterized and used as dissolved organic matter (DOM) for the production of macroaggregates. The role of organic particles such as transparent exopolymeric particles (TEP) and Coomassie stained particles (CSP) in the production of macroaggregates was experimentally assessed. Three experimental rolling tanks containing sterile medium with: (1) EPS, (2) EPS + live diatom cells and (3) EPS + killed bacteria, and three control tanks without any added EPS were used for macroaggregate production. Changes in abundance and average size of macroaggregates were monitored using image analysis, whereas TEP and CSP were enumerated microscopically. In the presence of microbial EPS, macroaggregates of a size of 23–35 mm2 were produced. Aggregate size and abundance considerably varied with both time and source of EPS. No correlation was observed for macroaggregate size and abundance with either TEP or CSP. One-way ANOVA demonstrated significant differences in the variance of particle abundance and size in tanks having only EPS or EPS in combination with live diatom cells. Our data suggest that production of macroaggregates was influenced by polymer chemistry and surface properties of colliding particles, whereas TEP and CSP concentrations were influenced by molecular weight of EPS and the presence of growing cells. Interestingly, macroaggregates were formed in the near absence of TEP and CSP, highlighting the role of other unknown processes in the transformation of DOM to particulate organic matter (POM) in aquatic environments.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 47 (2004), S. 0 
    ISSN: 1574-6941
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Marine aggregates are densely colonized by bacteria, and inter-specific interactions such as inhibition are important for colonization by aggregate-associated bacteria and thus affect the turnover of organic matter in the sea. In order to study antagonistic activities we carried out inhibition tests with 51 isolates obtained exclusively from aggregates of the German Wadden Sea. 16S rRNA gene sequences of all isolates revealed that 35% of the isolates affiliated with the Flavobacteria/Sphingobacteria group, 24% and 16% with α- and γ-Proteobacteria, respectively, 16% with the Bacillus/Clostridium group, and 10% with Actinobacteria. The relatively high percentage of Gram-positive bacteria may be related to specific features of the Wadden Sea environment. After 11 days of incubation using Burkholder agar diffusion assays the percentage of inhibitory isolates was 54.1% and this decreased to 20.7% after 20 days of incubation but it did not decline for members of the Bacillus/Clostridium group. Inhibitory activity was expressed in strain-specific patterns even though some isolates were closely related according to their 16S rRNA gene sequences. Antagonistic activity was lowest for Flavobacteria/Sphingobacteria (35%) and highest for Actinobacteria (80%). We further examined whether growth of isolates was affected when they were placed on lawns of certain other isolates. In parallel with lowest percentage of inhibitory isolates, highest growth occurred on lawns of the Flavobacteria/Sphingobacteria group whereas it was lowest on lawns of Actinobacteria and the Bacillus/Clostridium group. The high inhibitory activity of both groups of Gram-positive bacteria fits well with data from chemical screening using matrix-assisted laser desorption ionization time of flight mass spectrometry. Hence, inhibitory activity greatly influences inter-specific interactions and may impact microbial degradation and remineralization of particulate organic matter in aquatic environments.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-04-23
    Beschreibung: The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm ( ∼  55 m3) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO2) extending from present to future conditions. The study was conducted in July–August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO2-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO2 treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria–phytoplankton community. However, distance-based linear modelling only identified fCO2 as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO2 impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO2-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-04-23
    Beschreibung: About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient ( ∼  370 µatm) to high ( ∼  1200 µatm), were set up in mesocosm bags ( ∼  55 m3). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0–t16; II: t17–t30; III: t31–t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m−2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by  ∼  7 % in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was  ∼  100 mmol C m−2 day−1, from which 75–95 % was respired,  ∼  1 % ended up in the TPC (including export), and 5–25 % was added to the DOC pool. During phase II, the respiration loss increased to  ∼  100 % of GPP at the ambient CO2 concentration, whereas respiration was lower (85–95 % of GPP) in the highest CO2 treatment. Bacterial production was  ∼  30 % lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The “extra” organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-08-09
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...