GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: A report on sustainability issues and long-term implementation plan for IAOOS. National and European plans for long-term implementation (organization, funding, role of the different nations, EU, role and international partners) of the Atlantic observing system will be prepared.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Environmental Pollution, ELSEVIER SCI LTD, 269(116095), ISSN: 0269-7491
    Publication Date: 2021-03-22
    Description: The occurrence of microplastics throughout marine environments worldwide, from pelagic to benthic habitats, has become serious cause for concern. Hadal zones were recently described as the “trash bins of the oceans” and ultimate sink for marine plastic debris. The Kuril region covers a substantial area of the North Pacific Ocean and is characterised by high biological productivity, intense marine traffic through the Kuril straits, and anthropogenic activity. Moreover, strong tidal currents and eddy activity, as well as the influence of Pacific currents, have the potential for long distance transport and retention of microplastics in this area. To verify the hypothesis that the underlying Kuril Kamchatka Trench might accumulate microplastics from the surrounding environments and act as the final sink for high quantities of microplastics, we analysed eight sediment samples collected in the Kuril Kamchatka Trench at a depth range of 5143–8250 m during the Kuril Kamchatka Biodiversity Studies II (KuramBio II) expedition in summer 2016. Microplastics were characterised via Micro Fourier Transform Infrared spectroscopy. All samples were analysed in their entirety to avoid inaccuracies due to extrapolations of microplastic concentrations and polymer diversities, which would otherwise be based on commonly applied representative aliquots. The number of microplastic particles detected ranged from 14 to 209 kg−1 sediment (dry weight) with a total of 15 different plastic polymers detected. Polypropylene accounted for the largest proportion (33.2%), followed by acrylates/polyurethane/varnish (19%) and oxidized polypropylene (17.4%). By comparing extrapolated sample aliquots with in toto results, it was shown that aliquot-based extrapolations lead to severe under- or overestimations of microplastic concentrations, and an underestimation of polymer diversity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Faszination Meeresforschung, Faszination Meeresforschung, Heidelberg, SPRINGER, pp. 179-210, ISBN: 978-3-662-49714-5
    Publication Date: 2017-01-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-20
    Description: Climate change-related alterations of Antarctic sea-ice habitats will significantly impact the interaction of ice-associated organisms with the environment, with repercussions on ecosystem functioning. The nature of this interaction is poorly understood, particularly during the critical period of winter–spring transition. To investigate the role of sea-ice and underlying water-column properties in structuring under-ice communities during late winter/early spring, we used a Surface and Under Ice Trawl to sample animals and environmental properties in the upper 2-m layer under the sea ice in the northern Weddell Sea from August to October 2013. The area of investigation was largely homogeneous in terms of hydrography and sea-ice coverage. We hypothesised that this apparent homogeneity in the physical regime was mirrored in the structure of the under-ice community. The under-ice community was numerically dominated by the copepods Stephos longipes, Ctenocalanus spp. and Calanus propinquus (altogether 67 %), and furcilia larvae of Antarctic krill Euphausia superba (30 %). In spite of the apparent homogeneity of the environment, abundance and biomass distributions at our sampling stations indicated the presence of three community types, following a geographical gradient in the investigation area: (1) high biomass, krill-dominated in the west, (2) high abundance, copepod-dominated in the east, and (3) low abundance, low biomass at the ice edge. Combined analysis with environmental data indicated that under-ice community structure was correlated with sea-ice coverage, chlorophyll a concentration, and bottom depth. The heterogeneity of the Antarctic under-ice community was probably also driven by other factors, such as advection, sea-ice drift, and seasonal progression. The response of under-ice communities to changing sea-ice habitats may thus considerably vary seasonally and regionally.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-15
    Description: In the Southern Ocean, that is areas south of the Polar Front, long-term oceanographic cooling, geographic separation, development of isolating current and wind systems, tectonic drift and fluctuation of ice sheets amongst others have resulted in a highly endemic benthic fauna, which is generally adapted to the long-lasting, relatively stable environmental conditions. The Southern Ocean benthic ecosystem has been subject to minimal direct anthropogenic impact (compared to elsewhere) and thus presents unique opportunities to study biodiversity and its responses to environmental change. Since the beginning of the century, research under the Census of Marine Life and International Polar Year initiatives, as well as Scientific Committee of Antarctic Research biology programmes, have considerably advanced our understanding of the Southern Ocean benthos. In this paper, we evaluate recent progress in Southern Ocean benthic research and identify priorities for future research. Intense efforts to sample and describe the benthic fauna, coupled with coordination of information in global databases, have greatly enhanced understanding of the biodiversity and biogeography of the region. Some habitats, such as chemosynthetic systems, have been sampled for the first time, while application of new technologies and methods are yielding new insights into ecosystem structure and function. These advances have also highlighted important research gaps, notably the likely consequences of climate change. In a time of potentially pivotal environmental change, one of the greatest challenges is to balance conservation with increasing demands on the Southern Ocean’s natural resources and services. In this context, the characterization of Southern Ocean biodiversity is an urgent priority requiring timely and accurate species identifications, application of standardized sampling and reporting procedures, as well as cooperation between disciplines and nations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...