GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amsterdam [u.a.] : Elsevier  (1)
  • Geological Society of America (GSA)  (1)
  • Geological Society of America, GSA  (1)
  • 1
    Book
    Book
    Amsterdam [u.a.] : Elsevier
    Type of Medium: Book
    Pages: VI, 194 S , Ill., graph. Darst
    Series Statement: Marine chemistry 120.2010,1/4
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: A negative shift in the calcium isotopic composition of marine carbonate rocks spanning the end-Permian extinction horizon in South China has been used to argue for an ocean acidification event coincident with mass extinction. This interpretation has proven controversial, both because the excursion has not been demonstrated across multiple, widely separated localities, and because modeling results of coupled carbon and calcium isotope records illustrate that calcium cycle imbalances alone cannot account for the full magnitude of the isotope excursion. Here, we further test potential controls on the Permian-Triassic calcium isotope record by measuring calcium isotope ratios from shallow-marine carbonate successions spanning the Permian-Triassic boundary in Turkey, Italy, and Oman. All measured sections display negative shifts in δ44/40Ca of up to 0.6‰. Consistency in the direction, magnitude, and timing of the calcium isotope excursion across these widely separated localities implies a primary and global δ44/40Ca signature. Based on the results of a coupled box model of the geological carbon and calcium cycles, we interpret the excursion to reflect a series of consequences arising from volcanic CO2 release, including a temporary decrease in seawater δ44/40Ca due to short-lived ocean acidification and a more protracted increase in calcium isotope fractionation associated with a shift toward more primary aragonite in the sediment and, potentially, subsequently elevated carbonate saturation states caused by the persistence of elevated CO2 delivery from volcanism. Locally, changing balances between aragonite and calcite production are sufficient to account for the calcium isotope excursions, but this effect alone does not explain the globally observed negative excursion in the δ13C values of carbonate sediments and organic matter as well. Only a carbon release event and related geochemical consequences are consistent both with calcium and carbon isotope data. The carbon release scenario can also account for oxygen isotope evidence for dramatic and protracted global warming as well as paleontological evidence for the preferential extinction of marine animals most susceptible to acidification, warming, and anoxia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-01
    Description: During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios ({delta}44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater {delta}44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater {delta}44/40Ca shifts. This suggests that the response of seawater {delta}44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...