GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (43)
  • 11
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1706-1706
    Abstract: Abstract 1706 The recent study of whole-exome sequencing on MDS has revealed frequent and specific pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, SRSF2, SF3B1 and ZRSR2. The mutually exclusive manner of these mutations among MDS cases also supported that deregulated RNA splicing contributes to the pathogenesis of MDS. Interestingly, the distribution of these splicing pathway mutations shows a substantial difference with regard to disease subtypes. Thus, the SF3B1 mutations are by far the most frequent in RARS and RCMD-RS cases, and the SRSF2 mutations are more prevalent in CMML. SRSF2 is a member of the SR protein family that is commonly characterized by one or two RNA recognition motifs (RRM) and a signature serine/arginine-rich domains (RS domains). The SR proteins interact with other spliceosome components through their RS domains, among which most extensively characterized are SRSF1 (ASF/SF2) and SRSF2 (SC35). Both SR proteins bind a splicing enhancer site within the 3' target exon and also interact with the U2AF, playing an indispensable role in both constitutive and alternative splicing in most cell types. In fact, the knockout of these genes in mice results in embryonic lethality. There is emerging evidence that establishes a connection between the abnormal expression of SR proteins and the development of cancer, mainly as a result of change in the alternative splicing patterns of key transcripts. Increased expression of SR proteins usually correlates with cancer progression, as shown by elevated expression of SR proteins in ovarian cancer and breast cancer. In spite of the similarity in their functions, both proteins are thought to have distinct roles, especially in the pathogenesis of myeloid malignancies, since we found no SRSF1 mutations among 582 cases with myeloid neoplasms. On the other hand, studies have shown that increased expression of SRSF1 transforms immortal rodent fibroblasts and leads to the formation of sarcomas in nude mice, supporting the notion that SRSF1 is a proto-oncogene, whereas SRSF2 does not have transforming activity, indicating a highly specific role of SRSF1 in this type of cancer. Thus, little is known about the biological mechanism by which the SRSF2 mutations are involved in the pathogenesis of MDS, although the mutations at the P95 site are predicted to cause a significant displacement of the RS domain relative to the domain for RNA binding. So to gain an insight into the functional aspect of SRSF2 mutations, we performed sequencing analysis of mRNAs extracted from mutant (P95H) SRSF2-transduced HeLa cells in which expression of the wild-type and mutant SRSF2 were induced by doxycycline. The abnormal splicing in mutant SRSF2-transduced cells was directly demonstrated by evaluating the read counts in different fractions. Next, to investigate functional role of SRSF2 mutant, HeLa cells were transduced with lentivirus constructs expressing either the P95H SRSF2 mutant or wild-type SRSF2, and cell proliferation was examined. After the induction of gene expression, the mutant SRSF2-transduced cells showed reduced cell proliferation. In addition, we transduced P95H SRSF2 constructs into factor-dependent 32D cell lines. The expression of mutant SRSF2 protein resulted in increased apoptosis in the presence of IL-3 and also suppression of cell growth in the presence of G-CSF, which may be related to ineffective hematopoiesis, a common feature of MDS. To further clarify the biological effect of SRSF2 mutants in vivo, a highly purified hematopoietic stem cell population (CD34-c-Kit+ScaI+ Lin-) prepared from C57BL/6 (B6)-Ly5.1 mouse bone marrow was retrovirally transduced with either the mutant or wild-type SRSF2 with EGFP marking. The transduced cells were mixed with whole bone marrow cells from B6-Ly5.1/5.2 F1 mice, transplanted into lethally irradiated B6-Ly5.2 recipients, and we are now monitoring the ability of these transduced cells to reconstitute the hematopoietic system and other hematological phenotypes. Much remains, however, to be unrevealed about the functional link between the abnormal splicing of RNA species and the phenotype of myelodysplasia. Further functional studies should be warranted to understand these mechanisms in detail. In this meeting, we will present the results of our functional studies on the SRSF2 mutations and discuss the pathogenesis of MDS in terms of the alterations of splicing machinery. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 4933-4933
    Abstract: Central nervous system (CNS) recurrence is a serious and usually fatal complication in the clinical course of aggressive lymphoma. Although our recent report suggested that the improvement of clinical outcomes in intravascular large B-cell lymphoma (IVLBCL) by the application of rituximab, the clinical impact of CNS recurrence in IVLBCL is unknown. To evaluate risks and risk factors associated with development of CNS recurrence in IVLBCL, we retrospectively analyzed 106 patients with IVLBCL receiving chemotherapies with or without rituximab, using our recent cohort (Shimada et al. J Clin Oncol. 2008). Clinical outcomes for our cohort were updated as of December 2007. For this analysis, we excluded 21 of 106 patients (20%) with CNS involvement at diagnosis, which was diagnosed by imaging modalities including computed tomography (CT) and/or magnetic resonance imaging (MRI), and/or cerebrospinal fluid (CSF) analysis. In all, 46 patients (54%) and 39 patients (46%) received chemotherapies without rituximab (chemotherapy) and with rituximab (R-chemotherapy), respectively. With a median follow-up for surviving patients of 39 months (range, 2–158 months), 11 of 46 patients (24%) in the chemotherapy group and 7 of 39 patients (18%) in the R-chemotherapy group developed CNS recurrence after beginning chemotherapy. Median duration between diagnosis and CNS recurrence in the both groups was 9 months (range, 1–44 months). Three patients in the each group displayed CNS progression on the initial series of chemotherapies. Risk of CNS recurrence at 3 years reached 29% in the chemotherapy group and 21% in the R-chemotherapy group, respectively (log-rank test, P = 0.41) (shown as figure). In univariate analysis, use of rituximab combined with initial chemotherapies was not identified as favorable predictive factors. In 12 patients who received autologous stem cell transplantation before CNS recurrence, 1 patient developed CNS relapse by the end of the study. Median survival after CNS recurrence was 6 months (range, 1–58 months), and survival rate at 2 years after CNS recurrence was 14%. This study indicates that CNS recurrence remains a critical problem in the rituximab era. Further studies are required to establish the optimal treatment strategy for CNS prophylaxis in IVLBCL. Figure Figure
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 1709-1709
    Abstract: Introduction: Age-related clonal hematopoiesis (CH) has been implicated in an increased risk of myeloid neoplasms. While common driver genes mutated in CH largely overlap to those in myeloid neoplasms, a notable exception is protein phosphatase Mg2+/Mn2+dependent 1D gene (PPM1D), encoding a p53-targeting phosphatase. Although it is known to be involved in DNA damage response pathways and more frequently mutated in therapy-related myeloid neoplasms than in primary ones, its role in CH and myeloid neoplasms has not been fully understood. Aim: To identify genetic features associated with PPM1D mutations, we examined genetic profiles in the large cohorts of healthy elderly individuals and patients with myelodysplasia. Methods: We enrolled 10,826 healthy individuals ( 〉 60y) and 1,213 cases with myelodysplasia, including myelodysplastic syndromes (MDSs), myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) (n=1,080), and secondary acute myeloid leukemia (sAML) (n=133), of which 567 cases were treated by hematopoietic stem cell transplantation (HSCT) through the Japan Marrow Donor Program just after sampling, and 332 of them underwent any therapy before sampling. Samples from healthy individuals were subjected to multiplex-amplicon sequencing for 22 genes, including PPM1D and other genes, related to CH or myeloid neoplasms. Myelodysplasia samples had previously been sequenced for major myeloid drivers, except for PPM1D, which was newly sequenced in this study. Results: Frequency of PPM1D mutations in myelodysplasia and healthy individuals was 3.1% and 0.42%, with a median variant allele frequency (VAF) of 0.043 and 0.056, respectively. PPM1D mutations were more frequent in cases with previous treatment (4.8%) than in those without known history of therapy (2.3%) (P=0.038). In MDS and MDS/MPN cases, 59.5% of PPM1D mutations had accompanying mutations, in which DNMT3A mutations were the most frequently identified (16.2%, n=6). These 6 cases were diagnosed with RCUD (n=1), RCMD (n=2), RAEB-2 (n=2), or CMML (n=1). The association between PPM1D and DNMT3A mutations was also seen in 7 of 45 healthy individuals with PPM1D mutations, of which one had a DNMT3A-R882 mutation. In the HSCT cohort, 192 cases harbored ≥2 mutations of the 22 CH-related genes, and the relative temporal order of these mutations was investigated using Bradley-Terry model relying on their tumor cell fractions. The estimate of PPM1D mutations tended to be smaller than that of DNMT3A mutations. To further confirm chronological order of these mutations, VAF values were compared between them in the individuals with concurrent PPM1D and DNMT3A mutations (n=13; 6 myeloid neoplasms and 7 healthy donors). In the combined cohort, the VAFs of PPM1D and DNMT3A mutations were correlated (Spearman; correlation coefficient=0.87, P=1.2x10e-5). In both neoplastic and healthy cohort, the VAFs of DNMT3A-R882 mutations were larger than those of accompanying PPM1D mutations. These findings suggest that these mutations should be acquired in the same cell populations and that DNMT3A mutations might occur prior to PPM1D mutations. With regard to copy number alterations associated with PPM1D-mutated myelodysplasia, del(5q) (16.7%) and complex(-like) karyotypes (13.9%) were among the most frequent chromosomal abnormalities. Approximately 65% of PPM1D-mutated tumor samples had normal karyotype, which was similar to PPM1D-unmutated cases. PPM1D mutations did not significantly influence overall survival, although PPM1D mutations tended to negatively affect clinical outcome among patients who were treated with HSCT (Hazard ratio, 1.61; 95% confidence interval, 0.95 to 2.70). Conclusion: PPM1D mutations were more enriched in myelodysplasia than in CH, and the median value of VAF in PPM1D mutations in CH was not significantly different from that in myelodysplasia. The size of PPM1D-mutated clones tended to be relatively smaller compared with that of clones with other mutations in myelodysplasia. PPM1D and DNMT3A mutations might be cooperatively associated in the pathogenesis of myelodysplasia and CH. Disclosures Baer: MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Atsuta:CHUGAI PHARMACEUTICAL CO., LTD.: Honoraria; Kyowa Kirin Co., Ltd: Honoraria. Miyazaki:Chugai: Research Funding; Otsuka: Honoraria; Novartis: Honoraria; Nippon-Shinyaku: Honoraria; Dainippon-Sumitomo: Honoraria; Kyowa-Kirin: Honoraria. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Ogawa:Dainippon-Sumitomo Pharmaceutical, Inc.: Research Funding; Qiagen Corporation: Patents & Royalties; Asahi Genomics: Equity Ownership; RegCell Corporation: Equity Ownership; Kan Research Laboratory, Inc.: Consultancy; ChordiaTherapeutics, Inc.: Consultancy, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 9094-9095
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    In: Blood, American Society of Hematology, Vol. 116, No. 20 ( 2010-11-18), p. 4368-4375
    Abstract: To identify factors to improve the outcomes of related and unrelated allogeneic stem cell transplantations (allo-SCT) for Philadelphia chromosome–negative acute lymphocytic leukemia (Ph− ALL) in the first complete remission (CR1), we retrospectively analyzed 1139 Ph− ALL patients using the registry data, particularly the details of 641 patients transplanted in CR1. Overall survival was significantly superior among patients transplanted in CR1, but no significant difference was observed between related and unrelated allo-SCTs (related vs unrelated: 65% vs 62% at 4 years, respectively; P = .19). Among patients transplanted in CR1, relapse rates were significantly higher in related allo-SCT compared with unrelated allo-SCT, and multivariate analysis demonstrated that less than 6 months from diagnosis to allo-SCT alone was associated with relapse. On the other hand, nonrelapse mortality (NRM) was significantly higher in unrelated allo-SCT compared with related allo-SCT, and multivariate analysis demonstrated that 10 months or longer from diagnosis to allo-SCT, human leukocyte antigen mismatch, and abnormal karyotype were associated with NRM. In conclusion, our study showed comparable survival rates but different relapse rates, NRM rates, and risk factors between related and unrelated allo-SCTs. After a close consideration of these factors, the outcome of allo-SCT for adult Ph− ALL in CR1 could be improved.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1797-1797
    Abstract: Rituximab has markedly improved the clinical outcomes of mature B cell lymphoma, and rituximab maintenance therapy has been shown to be beneficial, especially in low grade B cell lymphoma (LGBCL). Several studies evaluated intensified rituximab administration combined with chemotherapy. But so far, there has not been any trial of rituximab mono-therapy with intensive rituximab induction followed by maintenance. A multicenter, phase II trial was conducted to evaluate the efficacy and safety of rituximab as induction, weekly 8 doses, and maintenance therapy for 2 years for LGBCL. Patients and Methods Patients with measurable LGBCL according to the World Health Organization (WHO) classification (2001) without prior rituximab treatment and staged as II, II, or IV by Ann-Arbor, were eligible. Patients received rituximab (375 mg/m2) weekly for 8 weeks as induction therapy, and then patients who did not have progressive disease at the end of induction received maintenance therapy with 4 weeks of rituximab at six-month intervals (up to 2 years or disease progression). Duration of treatment was 2.5 years in total. The primary endpoint was the best overall response rate (ORR). The secondary endpoints were complete response rate (CRR), 3-year progression free survival (PFS), 3-year overall survival (OS), and safety. Survivals were assessed using the Kaplan-Meier method. Results Forty-one patients with a median age of 64 years (41 to 79) were enrolled at 12 institutes belonging to the Clinical Hematology Group of National Hospital Organization (CHG-NHO) of Japan from December 2005 to May 2009. The majority of disease histology was follicular lymphoma in 33 patients. Of 41 patients, 15 were diagnosed as high tumor burden based on GELF criteria, and FLIP risk grouping classified all into 12 low risk, 21 intermediate risk, and 12 high risk cases. Four relapsed cases were included, and they have all received prior systemic chemotherapy without rituximab. Of the 41 patients, 31 (75.6%) completed the planned 2.5 years therapy. The best ORR was 75.6% (31/41, 90% CI: 62.2-86.1%), with 63.4% CR. Three-year PFS at a median follow-up time of 43.0 months (5.3-72) was 79.7% (90% CI, 66.6-88.1%). Three-year OS at a median follow-up time of 49.4 months (5.3-72) was 97.4% (90% CI, 87.1-99.5%). Grade 3 toxicities were neutropenia in 2.5% (1/41), elevated ALT in 2.5% (1/41), and infection in 2.5% (1/41). There was no grade 4 toxicity. Conclusions Intensified rituximab induction and maintenance therapy was demonstrated to have high activity, with durable PFS and minimum toxicity in LGBCL patients. Although a further large-scale trial is needed, intensified rituximab induction followed by rituximab maintenance could be a good treatment in rituximab naïve LGBCL. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1282-1282
    Abstract: Abstract 1282 Emerging evidence is establishing a connection between MDS and spliceosome mutations. Spliceosome including SF3b1, U2AF1 and SRSF2 are frequently and exclusively mutated in myelodysplastic syndromes (MDS) and related myeloid neoplasms. Spliceosome mutations occur at varying frequencies in different disease subtypes. SF3B1 was shown to be highly associated with MDS characterized by increased ring sideroblasts and SRSF2 mutations are more prevalent in chronic myelomonocytic leukemia. In spite of the fact that the recent discovery constitutes a novel class of genomic lesions and defines an entirely new pathogenic pathway of leukaemogenesis, the pathogenesis of spliceosome mutation is not largely understood. To understanding the biological consequences of spliceosomal mutations, we previously reported mutant U2AF1 cause altered RNA splicing, and overexpressed mutant U2AF1 decrease in cell proliferarion. However, currently, no functional analysis of SRSF2 mutation has been published. SRSF2 belongs to the serine/arginine-rich (SR) protein family. SR proteins are a family of RNA binding proteins characterized by one or two RNA recognition motifs (RRMs) and a signature RS domain enriched with arginine and serine repeats (RS domain).Growing body of evidence suggests that SR protein may be directly involved in the process of carcinogenesis. Gene knockout experiment indicated SRSF2 is involved with specific pathways in regulating cell proliferation and genomic stability during mammalian organogenesis. In neck and head tumor, SRSF2 is frequently overexpressed. And upregulated SRSF2 increases missplicing and downregulates E-cadherin expression, which is an important tumor suppressor gene. Therefore SRSF2 potential function in tumorigenesis is suggested in epithelial cancers. SRSF2 mutations with MDS exclusively occur at P95 within an intervening sequence between RRM and RS domains, indicating a gain-of-function nature of these mutations. So, to clarify the biological role of SRSF2 mutations in leukemogenesis, we evaluated the oncogenic role of SRSF mutations by expressing a mutant SRSF2 allele in Jurkat cells. The cells transduced with a tumor-derived SRSF2 allele showed reduced cell proliferation and increased apoptosis compared to the mock and wild type SRSF2-transduced cells. Next we performed in vitro colony assay using a highly purified hematopoietic stem cell population (CD34-c-Kit+ScaI+ Lin-(CD34-KSL) cells) collected from C57BL/6 (B6)-Ly5.1 mouse that was retrovirally transduced with mock, mutant or wild-type SRSF2 construct. The mutant SRSF2-transduced cells showed reduced cell proliferation compared with mock- or wild-type SRSF2 transduced cells. Subsequently, we conducted bone marrow transplantaion assay. We collected CD34-KSL cells from B6-Ly5.1 mouse, and retrovirally transduce mock, mutant or wild-type SRSF2 construct, each harbouring the EGFP marker gene. And these cells were sorted by EGFP marker, and transplanted with competitor cells (B6-Ly5.1/5.2 F1 mice origin) into lethally irradiated B6-Ly5.2 mice. The wild-type SRSF2-transduced cells showed a lower reconstitution capacity than the mock-transduced cells. On the other hand, the recipients of the cells transduced with the mutant SRSF2 showed lower EGFP-positive cell chimaerism than those of the mock- or the wild-type SRSF2-transduced. Therefore, the mutant SRSF2 was indicated to have a negative effect on cellular proliferation capacity in vitro and in vivo, and a gain-of-function nature of these mutations is suggested. These results are similar to the effect of U2AF1 mutant, which we reported mutant U2AF1 transduced TF-1 and HeLa cells present with a decrease in cell proliferation and hematopoietic stem cells expressing mutant U2AF1 also displayed lower reconstitution capacity by competitive reconstitution assay in mice. So far, the mechanism responsible for the growth advantage of mutant cells in patient is unclear. We furthermore observe hematopoietic phenotype of the bone marrow transplanted model mouse. SRSF2 mutations can coexist with mutations in TET2, ASXL1 and RUNX1. Therefore we performed additionally bone marrow transplantation assay, utilizing hematopoietic cells derived from TET2 knockdown mice, as a model of multistep carcinogenesis. We will present the results of our biological assay on the SRSF2 mutations and discuss the pathogenesis of MDS. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    In: Blood, American Society of Hematology, Vol. 90, No. 11 ( 1997-12-01), p. 4363-4368
    Abstract: We recently showed that c-kit signal synergizes with glycoprotein (gp)130 signal mediated by a complex of interleukin (IL)-6 and soluble IL-6 receptor (IL-6/sIL-6R) to stimulate the expansion of human primitive hematopoietic progenitor cells and erythropoietin-independent erythropoiesis. In the present study, we examined the effect of a ligand for Flt3 (FL), whose receptor tyrosine kinase is closely related to c-kit, in combination with IL-6/sIL-6R on human hematopoiesis in vitro. In serum-containing methylcellulose clonal culture of cord blood CD34+ cells, whereas FL alone stimulated only granulocyte-macrophage (GM) colony formation, erythroid bursts and mixed colonies in addition to GM colonies were induced by FL with IL-6/sIL-6R, but not IL-6/sIL-6R alone. In suspension culture, CD34+ cells generated a small number of myeloid cells in the presence of FL or IL-6/sIL-6R alone. However, the addition of IL-6/sIL-6R to the culture with FL induced the generation of a significant number of erythroid cells and megakaryocytes in addition to myeloid cells. The combination of FL and IL-6/sIL-6R also induced a remarkable expansion of GM colony- and erythroid burst-forming cells and multipotential progenitors, although FL or IL-6/sIL-6R alone induced the generation of only a small number of progenitors for GM colonies. The synergistic effects of FL and IL-6/sIL-6R were confirmed in serum-free clonal and suspension cultures. In addition, the addition of anti-human gp130 monoclonal antibodies abrogated the synergistic action. These results indicate that Flt3 signal, as well as c-kit signal, synergizes with gp130 signal to stimulate human myelopoiesis, erythropoiesis and megakaryopoiesis, and the expansion of primitive multipotential hematopoietic progenitor cells.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1997
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 2094-2094
    Abstract: Abstract 2094 Haploidentical natural killer (NK) cells can induce and consolidate remission in patients with high-risk acute myeloid leukemia (AML) (Rubnitz et al. J Clin Onc 24: 371, 2010). Recently, significantly reduced relapse rates were observed in AML patients who received killer immunoglobulin-like receptor ligand-mismatched cord blood, suggesting effective alloreactivity of cord blood-derived NK cells (Willemze et al. Leukemia 23: 492, 2009). Cord blood transplantation (CBT) is an effective alternative source for allogeneic hematopoietic cell transplantation in both children and adults. However, its therapeutic efficacy for malignant diseases is limited by the lack of available donor effector cells, such as cytotoxic T lymphocytes, lymphokine-activated killer cells, NK-like T cells and NK cells, for treatment of hematological relapse and posttransplant lymphoproliferative disorder and/or for scheduled posttransplant cellular immunotherapy against refractory diseases. We previously reported a method that induces NK cells to proliferate and reliably allows their genetic modification in healthy individuals and leukemia patients in remission receiving maintenance chemotherapy (Imai et al. Blood 106: 376, 2005). To explore the possibility of using patients’ peripheral blood as a source for posttransplant NK cell therapy, we used our method to expand donor-derived NK cells from peripheral blood of CBT recipients early after engraftment. We also examined whether NK cells can be rendered cytotoxic against original leukemia blasts by transferring an antigen-specific artificial immunoreceptor gene. This study was approved by an institutional ethical committee. Patients received CBT for consolidation of hematological malignancy (n=7), neuroblastoma (n=1) or resolution of refractory EBV-associated hemophagocytic syndrome (n=1) with myeloablative (n=7) or reduced intensity conditioning (RIC) regimens (n=2). The patients were enrolled in the study after engraftment and peripheral blood was obtained after appropriate written consent was obtained. A chimerism study using short tandem repeat assays showed complete donor chimerism in all patients except one who received RIC-CBT. The peripheral blood was obtained at a median of 92 days post-CBT (range: 46–303 days) and subjected to ex vivo activation and expansion using a previously described protocol with slight modifications. Briefly, peripheral blood was coincubated with modified K562 cells expressing membrane-bound IL-15 and 4-1BB ligand (K562-mb15-41BBL) in the presence of low-dose IL-2 (10 U/mL). Most patients were on maintenance immunosuppressive therapy with calcineurin inhibitors with (n=3) or without (n=6) systemic corticosteroids. After 7 days of culture, a median 11.0-fold expansion (range: 5.3–28.9-fold) was observed in all but one patient who had been administered chemotherapy with Mylotarg for relapsed AML a few days before the blood sampling. The expansion rate in the first week was less efficient in CBT recipients than in healthy individuals ( 〉 20-fold), probably because of the immunosuppressants administered. However, an additional 2-week culture in the presence of high-dose IL-2 (1000 U/mL) yielded a median 206-fold expansion (range: 101–1381-fold in 21 days). The expanded NK cells exhibited upregulation of activating receptors including NKG2D, NCRp30 and NCRp44, and vigorous cytotoxicity against K562 cells (86.8–97.7% at an E/T ratio of 1:1). The NK cells were susceptible to retroviral genetic modification with the MSCV-IRES-GFP vector (median GFP-positive cells, 52.7%, n=10). Finally, peripheral NK cells from patients with acute lymphoblastic leukemia were expanded and transduced with the chimeric immunoreceptor gene anti-CD19-BB-ζ. The donor-derived NK cells expressed large amounts of anti-CD19 chimeric receptors on their surface and killed original leukemia blasts that were highly resistant to NK cell lysis (e.g. anti-CD19 vs. non-signaling receptor: 69% vs. 0% at an E/T ratio of 1:1). These results suggest that, in CBT recipients, ex vivo expansion and genetic modification of donor-derived NK cells from the patients’ peripheral blood is feasible. Because peripheral blood can be easily and repeatedly obtained, the method described here will allow multiple scheduled infusions. This preliminary study may lead to a novel strategy for posttransplant donor-NK cell therapy in CBT recipients. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    In: Blood, American Society of Hematology, Vol. 131, No. 2 ( 2018-01-11), p. 215-225
    Abstract: ATL subtypes are further classified into molecularly distinct subsets with different prognosis by genetic profiling. PD-L1 amplifications are a strong genetic predictor for worse outcome in both aggressive and indolent ATL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...