GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (4)
Material
Publisher
  • American Society for Microbiology  (4)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Applied and Environmental Microbiology Vol. 70, No. 7 ( 2004-07), p. 4144-4150
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 70, No. 7 ( 2004-07), p. 4144-4150
    Abstract: The large tropical lucinid clam Codakia orbicularis has a symbiotic relationship with intracellular, sulfide-oxidizing chemoautotrophic bacteria. The respiration strategies utilized by the symbiont were explored using integrative techniques on mechanically purified symbionts and intact clam-symbiont associations along with habitat analysis. Previous work on a related symbiont species found in the host lucinid Lucinoma aequizonata showed that the symbionts obligately used nitrate as an electron acceptor, even under oxygenated conditions. In contrast, the symbionts of C. orbicularis use oxygen as the primary electron acceptor while evidence for nitrate respiration was lacking. Direct measurements obtained by using microelectrodes in purified symbiont suspensions showed that the symbionts consumed oxygen; this intracellular respiration was confirmed by using the redox dye CTC (5-cyano-2,3-ditolyl tetrazolium chloride). In the few intact chemosymbioses tested in previous studies, hydrogen sulfide production was shown to occur when the animal-symbiont association was exposed to anoxia and elemental sulfur stored in the thioautotrophic symbionts was proposed to serve as an electron sink in the absence of oxygen and nitrate. However, this is the first study to show by direct measurements using sulfide microelectrodes in enriched symbiont suspensions that the symbionts are the actual source of sulfide under anoxic conditions.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2009
    In:  Applied and Environmental Microbiology Vol. 75, No. 10 ( 2009-05-15), p. 3304-3313
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 75, No. 10 ( 2009-05-15), p. 3304-3313
    Abstract: The bivalve Codakia orbicularis , hosting sulfur-oxidizing gill endosymbionts, was starved (in artificial seawater filtered through a 0.22-μm-pore-size membrane) for a long-term experiment (4 months). The effects of starvation were observed using transmission electron microscopy, fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH), and flow cytometry to monitor the anatomical and physiological modifications in the gill organization of the host and in the symbiotic population housed in bacteriocytes. The abundance of the symbiotic population decreased through starvation, with a loss of one-third of the bacterial population each month, as shown by CARD-FISH. At the same time, flow cytometry revealed significant changes in the physiology of symbiotic cells, with a decrease in cell size and modifications to the nucleic acid content, while most of the symbionts maintained a high respiratory activity (measured using the 5-cyano-2,3-ditolyl tetrazolium chloride method). Progressively, the number of symbiont subpopulations was reduced, and the subsequent multigenomic state, characteristic of this symbiont in freshly collected clams, turned into one and five equivalent genome copies for the two remaining subpopulations after 3 months. Concomitant structural modifications appeared in the gill organization. Lysosymes became visible in the bacteriocytes, while large symbionts disappeared, and bacteriocytes were gradually replaced by granule cells throughout the entire lateral zone. Those data suggested that host survival under these starvation conditions was linked to symbiont digestion as the main nutritional source.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2009
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 1999
    In:  Applied and Environmental Microbiology Vol. 65, No. 7 ( 1999-07), p. 3229-3232
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 65, No. 7 ( 1999-07), p. 3229-3232
    Abstract: Maintenance of pathogenicity of viable but nonculturable Salmonella typhimurium cells experimentally stressed with UV-C and seawater, was investigated relative to the viability level of the cellular population. Pathogenicity, tested in a mouse model, was lost concomitantly with culturability, whereas cell viability remained undamaged, as determined by respiratory activity and cytoplasmic membrane and genomic integrities.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2007
    In:  Applied and Environmental Microbiology Vol. 73, No. 7 ( 2007-04), p. 2101-2109
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 73, No. 7 ( 2007-04), p. 2101-2109
    Abstract: We investigated the characteristics of the sulfur-oxidizing symbiont hosted in the gills of Codakia orbicularis , a bivalve living in shallow marine tropical environments. Special attention was paid to describing the heterogeneity of the population by using single-cell approaches including flow cytometry (FCM) and different microscopic techniques and by analyzing a cell size fractionation experiment. Up to seven different subpopulations were distinguished by FCM based on nucleic acid content and light side scattering of the cells. The cell size analysis of symbionts showed that the symbiotic population was very heterogeneous in size, i.e., ranging from 0.5 to 5 μm in length, with variable amounts of intracellular sulfur. The side-scatter signal analyzed by FCM, which is often taken as a proxy of cell size, was greatly influenced by the sulfur content of the symbionts. FCM revealed an important heterogeneity in the relative nucleic acid content among the subclasses. The larger cells contained exceptionally high levels of nucleic acids, suggesting that these cells contained multiple copies of their genome, i.e., ranging from one copy for the smaller cells to more than four copies for the larger cells. The proportion of respiring symbionts (5-cyano-2,3-ditolyl-terazolium chloride positive) in the bacteriocytes of Codakia revealed that around 80% of the symbionts hosted by Codakia maintain respiratory activity throughout the year. These data allowed us to gain insight into the functioning of the symbionts within the host and to propose some hypotheses on how the growth of the symbionts is controlled by the host.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...