GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Moored instruments  (4)
  • Ocean  (3)
  • Woods Hole Oceanographic Institution  (5)
  • American Meteorological Society  (2)
Publikationsart
Verlag/Herausgeber
  • Woods Hole Oceanographic Institution  (5)
  • American Meteorological Society  (2)
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: This report describes in a general manner the work that took place during the R/V Thomas Thompson cruise number 46 which was the mooring turnaround cruise for the moored array program. A detailed description of the WHOI surface mooring and its instrumentation is provided. Information about the XBT and CTD data and near-surface temperature data collected during the cruise is also included.
    Beschreibung: Funding was provided by the Office of Naval Research through Grant No. NOOOl4-94-1-0161.
    Schlagwort(e): Air-sea interaction ; Moored instruments ; Arabian Sea ; Thomas G. Thompson (Ship) Cruise TN46
    Repository-Name: Woods Hole Open Access Server
    Materialart: Technical Report
    Format: 3689282 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: An array of surface and subsurface moorings was deployed in the Arabian Sea to provide high quality time series of local forcing and upper ocean currents, temperature, and conductivity in order to investigate the dynamics of the ocean's response to the monsoonal forcing characteristic of the area. The moored array was first deployed during R/V Thomas Thompson cruise number 40; recovered and redeployed during R/V Thomas Thompson cruise number 46 and recovered to conclude the deployment during R/V Thomas Thompson cruise number 52. The array was part of the Office of Naval Research (ONR) funded Arabian Sea experiment. This report describes, in a general manner, the work that took place during the R/V Thomas Thompson cruise number 52. A detailed description of the Woods Hole Oceanographic Institution (WHOI) surface mooring and its instrumentation is provided. Information about the XBT and CTD data and near surface temperature data collected during the cruise is also included.
    Beschreibung: Funding was provided by the Office of Naval Research through Grant No. NOOOI4-94-1-0161.
    Schlagwort(e): Air-sea interaction ; Moored instruments ; Arabian Sea ; Thomas G. Thompson (Ship) Cruise TN52
    Repository-Name: Woods Hole Open Access Server
    Materialart: Technical Report
    Format: 2717593 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: An array of surface and subsurface moorings were deployed in the Arabian Sea to provide high quality time series of local forcing and upper ocean currents, temperature, and conductivity in order to investigate the dynamics of the ocean's response to the monsoonal forcing characteristic of the area. The moored array was deployed during R/V Thomas Thompson cruise number 40, One Woods Hole Oceanographic Institution (WHOI) surface mooring, two Scripps Institution of Oceanography (SIO) surface moorings and two University of Washington (UW) Profiling Current Meter moorings were deployed. The moorings were deployed for a period of one year beginning in October 1994 as part of the Office of Naval Research (ONR) funded Arabian Sea experiment. Two six month deployments were planned. The moorings were deployed at 15.5°N 61.5°E (WHOI), 15.7°N 61.3°E (SIO), 15.3°N 61.3°E (SIO), 15.7°N 61.7°E (UW), and 15.3°N 61.7°E (UW). The WHOI surface mooring was outfitted with two meteorological data collection systems. A Vector Averaging Wind Recorder (VAWR) and an IMET system made measurements of wind speed and direction, sea surface temperature, air temperature, short wave radiation, long wave radiation, barometric pressure, relative humidity and precipitation. Subsurface instrumentation included Vector Measuring Current Meters (VMCMs), Multi-Variable Moored Systems (MVMS), conductivity and temperature recorders and single point temperature recorders. Expendable bathythermograph (XBT) data and CTD data were collected while in transit to the site and between mooring locations. This report describes in a general manner the work that took place during R/V Thomas Thompson cruise number 40 which was the initial deployment cruise for this moored array. A detailed description of the WHOI surface mooring and its instrumentation is provided. Information about the XBT and CTD data collected during the cruise is also included.
    Beschreibung: Funding was provided by the Office of Naval Research under Grant No. N00014-94-1-0161.
    Schlagwort(e): Air-sea interaction ; Moored instruments ; Arabian Sea ; Thomas G. Thompson (Ship) Cruise TN40
    Repository-Name: Woods Hole Open Access Server
    Materialart: Technical Report
    Format: 2980811 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-26
    Beschreibung: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing, climate-quality records of surface meteorology, of air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the October 2005 cruise of NOAA’s R/V Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the WHOI surface mooring that had been deployed in December 2004, deployment of a new WHOI surface mooring at that site, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Environmental Technology Laboratory (ETL), and observations of the stratus clouds and lower atmosphere by NOAA ETL. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. The IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ETL instrumentation used during the 2005 cruise included cloud radar, radiosonde ballons, and sensors for mean and turbulent surface meteorology. In addition, two technicians from the University of Concepcion collected water samples for chemical analysis. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
    Beschreibung: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 and the Cooperative Institute for Climate and Ocean Research (CICOR).
    Schlagwort(e): STRATUS ; Ocean ; Climate ; Ronald H. Brown (Ship) Cruise RB05-05
    Repository-Name: Woods Hole Open Access Server
    Materialart: Technical Report
    Format: 16849004 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-26
    Beschreibung: A Severe Environment Surface Mooring (SESMOOR) was designed to make long term meteorological and near surface oceanographic measurements in areas where harsh envionmental conditions prevail. SESMOOR was deployed in the North Atlantic Ocean approximately 300 km southeast of Halifax, Nova Scotia for 141 days during the winter of 1988-89. Meterological data were acquired from two Vector Averaging Wind Recorders (VAWR) located on top of a specially designed buoy mast and included air temperature, relative humidity, barometric pressure, wind velocity, solar and longwave radiation. Sea surface temperature was also acquired by the VAWR. Current velocities and sea temperatures were obtained from two Vector Measuring Current Meters (VMCM) at 20 and 50 meters below the sea surface. This report discusses instrument performance, data quality, pre-and post-deployment calibrations, data telemetry, data processing procedures. This report also presents the data in a variety of displays.
    Beschreibung: Funding was provided by the Office of Naval Research under Contract No. N00014-84-C-0134, NR 083-400 and Grant No. N00014-90-J-1423.
    Schlagwort(e): Ocean currents ; Ocean temperature ; Moored instruments ; Oceanus (Ship : 1975-) Cruise OC203 ; Endeavor (Ship: 1976-) Cruise EN192
    Repository-Name: Woods Hole Open Access Server
    Materialart: Technical Report
    Format: 1629682 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-06-10
    Beschreibung: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., Miller, U., St Laurent, L., Ijichi, T., Weller, R. A., McRaven, L., Nylund, S., & Le Bel, D. Moored turbulence measurements using pulse-coherent doppler sonar. Journal of Atmospheric and Oceanic Technology, 38(9), (2021): 1621–1639, https://doi.org/10.1175/JTECH-D-21-0005.1.
    Beschreibung: Upper-ocean turbulence is central to the exchanges of heat, momentum, and gases across the air–sea interface and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed layer depths and sea surface temperature. In part, progress has been limited by the difficulty of measuring turbulence from fixed moorings that can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring turbulent kinetic energy (TKE) dissipation rates ϵ from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-Ocean Regional Study (SPURS) to collect two year-long datasets. We find that the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate 2-week missions for O(10−8) ≤ ϵ ≤ O(10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1–10 km. We also find that dissipation estimates from two different moorings at 12.5 and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.
    Beschreibung: This work was funded by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant NNX11AE84G), for SPURS-2 (NASA Grant NNX15AG20G), and for analysis (NASA Grant 80NSSC18K1494). Funding for early iterations of this project associated with the VOCALS project and Stratus 9 mooring was provided by NSF (Awards 0745508 and 0745442). Additional funding was provided by ONR Grant N000141812431 and NSF Award 1756839. The Stratus Ocean Reference Station is funded by the Global Ocean Monitoring and Observing Program of the National Oceanic and Atmospheric Administration (CPO FundRef Number 100007298), through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158. Microstructure measurements made from the glider were supported by NSF (Award 1129646).
    Schlagwort(e): Ocean ; Turbulence ; Atmosphere-ocean interaction ; Boundary layer ; Oceanic mixed layer ; In situ oceanic observations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Schlundt, M., Farrar, J. T., Bigorre, S. P., Plueddemann, A. J., & Weller, R. A. (2020). Accuracy of wind observations from open-ocean buoys: correction for flow distortion. Journal of Atmospheric and Oceanic Technology, 37(4), 687-703, doi:10.1175/JTECH-D-19-0132.1.
    Beschreibung: The comparison of equivalent neutral winds obtained from (i) four WHOI buoys in the subtropics and (ii) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56–0.76 m s−1. To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because 1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and 2) 1-min sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy–scatterometer comparisons. The interanemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the interanemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement.
    Beschreibung: We gratefully acknowledge the help of three anonymous reviewers, whose input greatly improved the paper. In particular, one reviewer pointed out a mistake in our initial interpretation of scatterometer stability, which was corrected in the final manuscript. JTF and MS were supported by NASA Grant NNX14AM71G (International Ocean Vector Winds Science Team). The SPURS observations were supported by NASA (Grants NNX11AE84G, NNX15AG20G, and 80NSSC18K1494). The Stratus, NTAS, and WHOTS ocean reference stations (ORS) are long-term surface moorings deployed as part of the OceanSITES (http://www.oceansites.org) component of the Global Ocean Observing System, and are supported by NOAA’s Climate Program Office’s Ocean Observing and Monitoring Division, as are RAW, AJP, and SPB through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158 with NOAA Climate Program Office (CPO) (FundRef No. 100007298). The technical staff of the UOP Group at WHOI and the crews of NOAA and UNOLS vessels have been essential to the successful long-term maintenance of the ORS.
    Schlagwort(e): Ocean ; Wind ; Buoy observations ; Remote sensing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...