GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Institute of Physics (AIP)  (2)
  • 1
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 1343-1362 
    ISSN: 1089-7666
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Direct numerical simulations of turbulence resulting from Kelvin–Helmholtz instability in stably stratified shear flow are used to study sources of anisotropy in various spectral ranges. The set of simulations includes various values of the initial Richardson and Reynolds numbers, as well as Prandtl numbers ranging from 1 to 7. We demonstrate that small-scale anisotropy is determined almost entirely by the spectral separation between the small scales and the larger scales on which background shear and stratification act, as quantified by the buoyancy Reynolds number. Extrapolation of our results suggests that the dissipation range becomes isotropic at buoyancy Reynolds numbers of order 105, although we cannot rule out the possibility that small-scale anisotropy persists at arbitrarily high Reynolds numbers, as some investigators have suggested. Correlation-coefficient spectra reveal the existence of anisotropic flux reversals in the dissipation subrange whose magnitude decreases with increasing Reynolds number. The scalar concentration field tends to be more anisotropic than the velocity field. Estimates of the dissipation rates of kinetic energy and scalar variance based on the assumption of isotropy are shown to be accurate for buoyancy Reynolds numbers greater than O(102). Such estimates are therefore reliable for use in the interpretation of most geophysical turbulence data, but may give misleading results when applied to smaller-scale flows. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 1327-1342 
    ISSN: 1089-7666
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Turbulence resulting from Kelvin–Helmholtz instability in layers of localized stratification and shear is studied by means of direct numerical simulation. Our objective is to present a comprehensive description of the turbulence evolution in terms of simple, conceptual pictures of shear–buoyancy interaction that have been developed previously based on assumptions of spatially uniform stratification and shear. To this end, we examine the evolution of various length scales that are commonly used to characterize the physical state of a turbulent flow. Evolving layer thicknesses and overturning scales are described, as are the Ozmidov, Corrsin, and Kolmogorov scales. These considerations enable us to provide an enhanced understanding of the relationships between uniform-gradient and localized-gradient models for sheared, stratified turbulence. We show that the ratio of the Ozmidov scale to the Thorpe scale provides a useful indicator of the age of a turbulent event resulting from Kelvin–Helmholtz instability. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...