GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q10006, doi:10.1029/2004GC000715.
    Description: New results from wide-angle seismic data collected parallel to the central Aleutian island arc require an intermediate to mafic composition for the middle crust and a mafic to ultramafic composition for the lower crust and yield lateral velocity variations that correspond to arc segmentation and trends in major element geochemistry. The 3-D ray tracing/2.5-D inversion of this sparse wide-angle data set, which incorporates independent phase interpretations and new constraints on shallow velocity structure, produces a faster and smoother result than a previously published velocity model. Middle-crustal velocities of 6.5–7.3 km/s over depths of ∼10–20 km indicate an andesitic to basaltic composition. High lower-crustal velocities of 7.3–7.7 km/s over depths of ∼20–35 km are interpreted as ultramafic-mafic cumulates and/or garnet granulites. The total crustal thickness is 35–37 km. This result indicates that the Aleutian island arc has higher velocities, and thus more mafic compositions, than average continental crust, implying that significant modifications would be required for this arc to be a suitable building block for continental crust. Lateral variations in average crustal velocity (below 10 km) roughly correspond to trends in major element geochemistry of primitive (Mg # 〉 0.6) lavas. The highest lower-crustal velocities (and presumably most mafic material) are detected in the center of an arc segment, between Unmak and Unalaska Islands, implying that arc segmentation exerts control over crustal composition.
    Description: Funding for this work was provided by the University of Wyoming Graduate School.
    Keywords: Continental crust ; Crustal geophysics ; Island arc ; Major element geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 7230986 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B09402, doi:10.1029/2005JB003981.
    Description: Prestack depth migrations of seismic reflection data collected around the Ocean Drilling Program (ODP) Leg 210 transect on the Newfoundland nonvolcanic margin delineate three domains: (1) extended continental crust, (2) transitional basement, and (3) apparent slow spreading oceanic basement beyond anomaly M3 and indicate first-order differences between this margin and its well-studied conjugate, the Iberia margin. Extended continental crust thins abruptly with few observed faults, in stark contrast with the system of seaward dipping normal faults and detachments imaged within continental crust off Iberia. Transition zone basement typically appears featureless in seismic reflection profiles, but where its character can be discerned, it does not resemble most images of exhumed peridotite off Iberia. Seismic observations allow three explanations for transitional basement: (1) slow spreading oceanic basement produced by unstable early seafloor spreading, (2) exhumed, serpentinized mantle with different properties from that off Iberia, and (3) thinned continental crust, likely emplaced by one or more detachment or rolling-hinge faults. Although we cannot definitively discriminate between these possibilities, seismic reflection profiles together with coincident wide-angle seismic refraction data tentatively suggest that the majority of transitional basement is thinned continental crust emplaced during the late stages of rifting. Finally, seismic profiles image abundant faults and significant basement topography in apparent oceanic basement. These observations, together with magnetic anomaly interpretations and the recovery of mantle peridotites at ODP Site 1277, appear to be best explained by the interplay of extension and magmatism during the transition from nonvolcanic rifting to a slow spreading oceanic accretion system.
    Description: The SCREECH program was funded by U.S. National Science Foundation grant OCE-9819053 to Woods Hole Oceanographic Institution, by the Danish Research Foundation (Danmarks Grundforskningsfond), and by the Natural Science and Engineering Council of Canada. D. Shillington was also supported by NSF grant OCE-0241940 and by the University of Wyoming Graduate School. B. Tucholke acknowledges additional support from NSF grant OCE-0326714 and the Henry Bryant Bigelow Chair in Oceanography at Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 11295345 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B11404, doi:10.1029/2005JB004156.
    Description: We present a compressional seismic velocity profile of the crust of the eastern margin of the Grand Banks of Newfoundland, Canada. This velocity model was obtained by a tomographic inversion of wide-angle data recorded on a linear array of 24 ocean-bottom seismometers (OBSs). At the landward side, we imaged a crustal thickness of 27 km in Flemish Pass and beneath Beothuk Knoll, which is thinner than the 35-km-thick crust of the central Grand Banks. We therefore assume that the eastern rim of the Grand Banks stretched uniformly by 25%. Farther seaward, the continental crust tapers rapidly beneath the continental slope to ~6 km thickness. In the distal margin we find a 60-km-wide zone with seismic velocities between 5.0 and 6.5 km/s that thins to the southeast from 6 km to 2 km, which we interpret as highly extended continental crust. Contrary to other seismic studies of the margins of the Grand Banks, we find seismic velocities of 8 km/s and higher beneath this thin crustal layer in the continent-ocean transition. We conclude that mantle was locally emplaced at shallow levels without significant hydration from seawater, or serpentinized mantle was removed along a décollement in the final stages of continental rifting. The outer edge of highly extended continental crust borders a 25-km-wide zone where seismic velocities increase gradually from 6.3 km/s just below the top of acoustic basement to 7.7 km/s at 5 km below basement. We interpret this area as a relatively narrow zone of exhumed and serpentinized continental mantle. Seawards, we imaged a thin and laterally heterogeneous layer with a seismic velocity that increases sharply from 5.0 km/s in basement ridges to 7.0 km/s at its base, overlying mantle velocities between 7.8 and 8.2 km/s. We interpret this area as unroofed mantle and very thin oceanic crust that formed at an incipient, magmastarved, ultraslow spreading ridge. A comparison of the conjugate rifted margins of the eastern Grand Banks and the Iberia Abyssal Plain show that they exhibit a similar seaward progression from continental crust to mantle to oceanic crust. This indicates that before continental breakup, rifting exhumed progressively deeper sections of the continental lithosphere on both conjugate margins. A comparison between the continent-ocean transition of the Grand Banks and Flemish Cap shows that the final phase of continental rifting and the formation of the first oceanic crust required more time at the Grand Banks margin than at the southeastern margin of Flemish Cap.
    Description: The SCREECH program was funded by the U.S. National Science Foundation grant OCE-9819053 to Woods Hole Oceanographic Institution, by the Danish Research Foundation (Danmarks Grundforskningsfond), and by the Natural Science and Engineering Council of Canada. HVA received support from the University of Texas Institute for Geophysics and a Jackson School of Geosciences Fellow award. BET acknowledges additional support from NSF grant OCE-0326714 and the Henry Bryant Bigelow Chair in Oceanography at Woods Hole Oceanographic Institution.
    Keywords: Continental rifting ; Marine geophysics ; Passive margin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(1),(2021): e2020JB020982, https://doi.org/10.1029/2020JB020982.
    Description: Seismic anisotropy measurements show that upper mantle hydration at the Middle America Trench (MAT) is limited to serpentinization and/or water in fault zones, rather than distributed uniformly. Subduction of hydrated oceanic lithosphere recycles water back into the deep mantle, drives arc volcanism, and affects seismicity at subduction zones. Constraining the extent of upper mantle hydration is an important part of understanding many fundamental processes on Earth. Substantially reduced seismic velocities in tomography suggest that outer rise plate‐bending faults provide a pathway for seawater to rehydrate the slab mantle just prior to subduction. Estimates of outer‐rise hydration based on tomograms vary significantly, with some large enough to imply that, globally, subduction has consumed more than two oceans worth of water during the Phanerozoic. We found that, while the mean upper mantle wavespeed is reduced at the MAT outer rise, the amplitude and orientation of inherited anisotropy are preserved at depths 〉1 km below the Moho. At shallower depths, relict anisotropy is replaced by slowing in the fault‐normal direction. These observations are incompatible with pervasive hydration but consistent with models of wave propagation through serpentinized fault zones that thin to 〈100‐m in width at depths 〉1 km below Moho. Confining hydration to fault zones reduces water storage estimates for the MAT upper mantle from ∼3.5 wt% to 〈0.9 wt% H20. Since the intermediate thermal structure in the ∼24 Myr‐old MAT slab favors serpentinization, limited hydration suggests that fault mechanics are the limiting factor, not temperatures. Subducting mantle may be similarly dry globally.
    Description: National Science Foundation. Grant Numbers: OCE-0625178, OCE-0841063
    Description: 2021-06-15
    Keywords: Outer‐rise hydration ; Upper mantle anisotropy ; Upper mantle hydration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B12403, doi:10.1029/2006JB004769.
    Keywords: Nonvolcanic margin ; Seismic reflection ; Continental extension
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q06009, doi:10.1029/2011GC003592.
    Description: The Cocos plate experiences extensional faulting as it bends into the Middle American Trench (MAT) west of Nicaragua, which may lead to hydration of the subducting mantle. To estimate the along strike variations of volatile input from the Cocos plate into the subduction zone, we gathered marine seismic refraction data with the R/V Marcus Langseth along a 396 km long trench parallel transect offshore of Nicaragua and Costa Rica. Our inversion of crustal and mantle seismic phases shows two notable features in the deep structure of the Cocos plate: (1) Normal oceanic crust of 6 km thickness from the East Pacific Rise (EPR) lies offshore Nicaragua, but offshore central Costa Rica we find oceanic crust from the northern flank of the Cocos Nazca (CN) spreading center with more complex seismic velocity structure and a thickness of 10 km. We attribute the unusual seismic structure offshore Costa Rica to the midplate volcanism in the vicinity of the Galápagos hot spot. (2) A decrease in Cocos plate mantle seismic velocities from ∼7.9 km/s offshore Nicoya Peninsula to ∼6.9 km/s offshore central Nicaragua correlates well with the northward increase in the degree of crustal faulting outboard of the MAT. The negative seismic velocity anomaly reaches a depth of ∼12 km beneath the Moho offshore Nicaragua, which suggests that larger amounts of water are stored deep in the subducting mantle lithosphere than previously thought. If most of the mantle low velocity zone can be interpreted as serpentinization, the amount of water stored in the Cocos plate offshore central Nicaragua may be about 2.5 times larger than offshore Nicoya Peninsula. Hydration of oceanic lithosphere at deep sea trenches may be the most important mechanism for the transfer of aqueous fluids to volcanic arcs and the deeper mantle.
    Description: This work was funded by the U.S. National Science Foundation MARGINS program under grants OCE0405556, OCE 0405654, and OCE 0625178.
    Keywords: Central America ; Cocos Plate ; Galápagos hot spot ; Plate bending and faulting ; Seismic velocities ; Subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...