GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no. 3 (2014): 10-16, doi:10.5670/oceanog.2014.78.
    Description: Anthropogenically driven climate change will rapidly become Earth's dominant transformative influence in the coming decades. The oceanic biological pump—the complex suite of processes that results in the transfer of particulate and dissolved organic carbon from the surface to the deep ocean—constitutes the main mechanism for removing CO2 from the atmosphere and sequestering carbon at depth on submillennium time scales. Variations in the efficacy of the biological pump and the strength of the deep ocean carbon sink, which is larger than all other bioactive carbon reservoirs, regulate Earth's climate and have been implicated in past glacial-​interglacial cycles. The numerous biological, chemical, and physical processes involved in the biological pump are inextricably linked and heterogeneous over a wide range of spatial and temporal scales, and they influence virtually the entire ocean ecosystem. Thus, the functioning of the oceanic biological pump is not only relevant to the modulation of Earth's climate but also constitutes the basis for marine biodiversity and key food resources that support the human population. Our understanding of the biological pump is far from complete. Moreover, how the biological pump and the deep ocean carbon sink will respond to the rapid and ongoing anthropogenic changes to our planet—including warming, acidification, and deoxygenation of ocean waters—remains highly uncertain. To understand and quantify present-day and future changes in biological pump processes requires sustained global observations coupled with extensive modeling studies supported by international scientific coordination and funding.
    Description: We thank the National Science Foundation for support of ocean biogeochemical flux studies, including the US JGOFS program throughout its tenure; OCE 9986766 to S. Honjo; and OCE-0425677, OCE-0851350, and OPP-0909377 to T. Eglinton.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2019. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Environmental Science and Technology 53(14), (2019):8244-8251, doi:10.1021/acs.est.9b02344.
    Description: Perylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in geochemical research and pollutant forensics because its historical record differs markedly from typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary record (1735 to 1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI, USA to examine mass accumulation rates and isotope records of perylene, and compare them with total organic carbon and the anthropogenic PAH fluoranthene. We support our arguments with radiocarbon (14C) data of higher plant leaf-wax n-alkanoic acids. Isotope-mass balance calculations of perylene and n-alkanoic acids indicate that ~40 % of sedimentary organic matter is of terrestrial origin. Further, both terrestrial markers are pre-aged on millennial time-scales prior to burial in sediments and insensitive to elevated 14C concentrations following nuclear weapons testing in the mid-20th Century. Instead, changes coincide with enhanced erosional flux during urban sprawl. These findings suggest that perylene is definitely a product of soil derived fungi, and a powerful chemical tracer to study spatial and temporal connectivity between terrestrial and aquatic environments.
    Description: We thank John King, Sean Sylva, Brad Hubeny, Peter Sauer, and Jim Broda for their help in sampling; Carl Johnson and Daniel Montluçon for their incessant help with analyses; as well as Mark Yunker for critical discussion on the perils of perylene. Professor Phil Meyers and two anonymous reviewers provided comments that improved the quality of the manuscript. U.M.H. acknowledges the Swiss National Science Foundation for his postdoctoral fellowship and T.I.E. and K.A.H. acknowledges the NSF for research grants CHE-0089172 and OCE-9708478.
    Description: 2020-06-19
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...