GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science and Technology, American Chemical Society, 48, pp. 13451-13458, ISSN: 0013-936X
    Publication Date: 2014-11-21
    Description: Plastic pollution is an emerging global threat for marine wildlife. Many species of birds, reptiles and fishes are directly impaired by plastics as they can get entangled in ropes and drown or they can ingest plastic fragments which, in turn, may clog their stomachs and guts. Microplastics of less than 1 mm can be ingested by small invertebrates but their fate in the digestive organs and their effects on the animals are yet not well understood. We embedded fluorescent microplastics in artificial agarose-based food and offered the food to marine isopods, Idotea emarginata. The isopods did not distinguish between food with and food without microplastics. Upon ingestion, the microplastics were present in the stomach and in the gut but not in the tubules of the midgut gland which is the principal organ of enzyme-secretion and nutrient resorption. The feces contained the same concentration of micro-plastics as the food which indicates that no accumulation of microplastics happens during the gut passage. Long-term bioassays of six weeks showed no distinct effects of continu¬ous micro-plastic consumption on mortality, growth, and intermolt duration. I. emarginata are able to prevent intrusion of particles even smaller than 1 µm into the midgut gland which is facilitated by the complex structure of the stomach including a fine filter system. It separates the midgut gland tubules from the stomach and allows only the passage of fluids and chyme. Our results indicate that micro¬plastics, as administered in the experi¬ments, do not clog the digestive organs of isopods and do not have adverse effects on their life history parameters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE INC
    In:  EPIC3Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, ELSEVIER SCIENCE INC, ISSN: 1532-0456
    Publication Date: 2019-09-09
    Description: Ingestion of microplastics can impair nutrition of marine invertebrates. In a laboratory study, we tested whether microplastics affect ingestion rates and gastrointestinal enzyme activities in the marine isopod Idotea emarginata. Isopods were fed for eight days with one out of four different food formulations: natural food (the brown alga Fucus vesiculosus) or synthetic diet consisting of freeze-dried algal powder embedded in agarose, both, with or without microplastic particles (fluorescent polymethyl methacrylate, 10–100 μm) at a concentration of 40 items per mg of food. The isopods accepted both types of food but consumed significantly more (average 3.1-fold) of the agar based synthetic food. I. emarginata responded to the reduced content of digestible organic matter in the synthetic food by a compensatory adjustment of the ingestion rates. Addition of microplastics had no effect on ingestion rates in natural food whereas the feeding rates for synthetic food varied in response to microplastics. Similarly, activity patterns of digestive enzymes, particularly those of esterases, changed significantly in the treatment with synthetic food. Isopods fed with synthetic food alone showed elevated esterase activities in the gut while those isopods fed with synthetic food and microplastics showed elevated esterase activities in the midgut gland but not in the gut. Apparently, not the exposure to microplastic alone, but the combined effects of reduced nutrient availability and microplastic ingestion caused considerable biochemical reactions in the digestive organs of the isopods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...