GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Journal of Structural Geology, Elsevier, 61, pp. 2-20, ISSN: 0191-8141
    Publication Date: 2014-05-06
    Description: Polar ice sheets play a fundamental role in Earth's climate system, by interacting actively and passively with the environment. Active interactions include the creeping flow of ice and its effects on polar geomorphology, global sea level, ocean and atmospheric circulation, and so on. Passive interactions are mainly established by the formation of climate records within the ice, in form of air bubbles, dust particles, salt microinclusions and other derivatives of airborne impurities buried by recurrent snowfalls. For a half-century scientists have been drilling deep ice cores in Antarctica and Greenland for studying such records, which can go back to around a million years. Experience shows, however, that the ice-sheet flow generally disrupts the stratigraphy of the bottom part of deep ice cores, destroying the integrity of the oldest records. For all these reasons glaciologists have been studying the microstructure of polar ice cores for decades, in order to understand the genesis and fate of ice-core climate records, as well as to learn more about the physical properties of polar ice, aiming at better climate-record interpretations and ever more precise models of ice-sheet dynamics. In this Part I we review the main difficulties and advances in deep ice core drilling in Antarctica and Greenland, together with the major contributions of deep ice coring to the research on natural ice microstructures. In particular, we discuss in detail the microstructural findings from Camp Century, Byrd, Dye 3, GRIP, GISP2, NorthGRIP, Vostok, Dome C, EDML, and Dome Fuji, besides commenting also on the earlier results of some pioneering ventures, like the Jungfraujoch Expedition and the Norwegian–British–Swedish Antarctic Expedition, among others. In the companion Part II of this work ( Faria et al., 2014), the review proceeds with a survey of the state-of-the-art understanding of natural ice microstructures and some exciting prospects in this field of research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-19
    Description: The present study is based on a series of two-dimensional simple shear numerical simulations of two-phase non-linear viscous materials used to investigate the mechanical behaviour of two-phase aggregates representing partially molten rocks. These simulations couple viscoplastic deformation with dynamic recrystallisation (DRX). The aim of these simulations is to investigate the competition between deformation and recrystallisation, and how they affect the mechanical behaviour and resulting microstructures of the deforming material. We systematically vary the melt to solid rock ratio, the dihedral angle of melt and the ratio of DRX vs. deformation. The results show that the amount of DRX and the dihedral angle have a first-order impact on the bulk rheology and the melt distribution in the aggregate. The numerical results allow defining two regimes, depending on the relative contribution of deformation and DRX: (1) a deformation-dominated regime at high strain rates (i.e., with a low ratio of recrystallisation vs. viscoplastic deformation) and (2) a recrystallisation-dominated regime at low strain rates (i.e., with a high ratio of recrystallisation vs. viscoplastic deformation). The first case results in systems bearing large connected melt pockets whose viscous flow controls the deformation of the aggregate, while disconnected smaller melt pockets develop in models where dynamic recrystallisation dominates. The results of this study allow us to better understand the development of connected melt pockets, which may focus melt flow. The distribution of the melt phase plays a key role in the formation of larger-scale melt-enriched shear bands, which in turn has a direct influence on large-scale convective mantle flow.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Alexander von Humboldt Foundation
    In:  EPIC32nd Japanese-American-German Frontiers of Science Symposium, Kyoto, Japan, 2019-09-26-2019-09-29Kyoto, Alexander von Humboldt Foundation
    Publication Date: 2019-11-11
    Description: The pollution input in polar ice sheets in Greenland and Antarctica is of atmospheric aeolian origin, just as all natural non-ice impurities as well. They thus provide potential information on the evolution of the atmospheric share of pollutants in the ocean. Aerosols found in ice are transported with atmospheric circulation and wind patterns and are deposited e.g. with precipitating snow. The impurity content in this so-called meteoric ice is relatively low compared to many other natural materials such as rocks (ppb to ppm range). The reason is that most aerosols in the atmosphere have been removed by fall-out or precipitation during transport from the impurities’ sources to the remote ice sheet. Non-ice constituents in polar ice cores have been studied in the last decades mainly for reconstructions of past atmospheric aerosol concentrations, with respect to questions conceding the global climate change. The fastest and easiest analytical way is chemical analysis of the melted water from ice cores. However despite the tiny concentrations, the interactions with and effects of impurities in the solid ice influence the physical properties of the material as a whole: e.g. electric as well as dielectric response and, in particular, mechanical behaviour thus “softness” of the material seems to be strongly controlled by impurities. Smaller concentrations of impurities (up to a few ‰) do soften the material as a whole, while larger concentrations of particles harden it, depending on the type of impurities of course. The underlying processes are partly hypothesised for decades, but not yet proven or understood satisfactorily as the quest for ppb to ppm concentrations in solid matrix material is a search for a “needle in a haystack”. To improve the data basis regarding the in-situ form of incorporation and spatial distribution of impurities in ice we used micro-cryo-Raman spectroscopy to identify the location, phase and composition of micrometer-sized inclusions in natural ice samples (NEEM ice core from Greenland and EPICA-DML ice core from Antarctica). The combination of Raman results with ice-microsctructure measurements and complementary impurity data provided by the standard analytical methods (IC, CFA, and DEP) allows for a more interdisciplinary approach interconnecting ice core chemistry and ice core physics. While the samples originating from interglacial times were dominated by sulfate salts—mainly gypsum, sodium sulfate (possibly thenardite) and iron–potassium sulfate (likely jarosite)—the glacial ice contained high numbers of mineral dust particles—in particular quartz, mica, feldspar, anatase, hematite and carbonaceous particles (black carbon). We cannot confirm cumulation of impurities in the grain boundary network as reported by other studies, neither micro-particles being dragged by migrating grain boundaries nor in form of liquid veins in triple junctions. We argue that mixing of impurities on the millimeter scale and chemical reactions are facilitated by the deforming ice matrix. Refs.: doi: 10.5194/tc-11-1075-2017 doi: 10.3389/feart.2019.00020 https://www.humboldt-foundation.de/web/trilateral-jagfos-2019.html http://www.nasonline.org/programs/kavli-frontiers-of-science/past-symposia/2019-jagfos.html Invited poster.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-02
    Description: Localisation of ductile deformation in rocks is commonly found at all scales from crustal shear zones down to grain scale shear bands. Of the various mechanisms for localisation, mechanical anisotropy has received relatively little attention, especially in numerical modelling. Mechanical anisotropy can be due to dislocation creep of minerals (e.g. ice or mica) and/or layering in rocks (e.g. bedding, cleavage). We simulated simple-shear deformation of a locally anisotropic, single-phase power-law rheology material up to shear strain of five. Localisation of shear rate in narrow shear bands occurs, depending on the magnitude of anisotropy and the stress exponent. At high anisotropy values, strain-rate frequency distributions become approximately log-normal with heavy, exponential tails. Localisation due to anisotropy is scale-independent and thus provides a single mechanism for a self-organised hierarchy of shear bands and zones from mm-to km-scales. The numerical simulations are compared with the natural example of the Northern Shear Belt at Cap de Creus, NE Spain.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...