GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Agu  (9)
  • Seismological Society of America (SSA)  (3)
Document type
Years
  • 1
    Publication Date: 2013-06-08
    Description: The mainshock and moderate-magnitude aftershocks of the 6 April 2009 M  6.3 L’Aquila seismic sequence, about 90 km northeast of Rome, provided the first earthquake ground-motion recordings in the urban area of Rome. Before those recordings were obtained, the assessments of the seismic hazard in Rome were based on intensity observations and theoretical considerations. The L’Aquila recordings offer an unprecedented opportunity to calibrate the city response to central Apennine earthquakes—earthquakes that have been responsible for the largest damage to Rome in historical times. Using the data recorded in Rome in April 2009, we show that (1) published theoretical predictions of a 1 s resonance in the Tiber valley are confirmed by observations showing a significant amplitude increase in response spectra at that period, (2) the empirical soil-transfer functions inferred from spectral ratios are satisfactorily fit through 1D models using the available geological, geophysical, and laboratory data, but local variability can be large for individual events, (3) response spectra for the motions recorded in Rome from the L’Aquila earthquakes are significantly amplified in the radial component at periods near 1 s, even at a firm site on volcanic rocks, and (4) short-period response spectra are smaller than expected when compared to ground-motion predictions from equations based on a global dataset, whereas the observed response spectra are higher than expected for periods near 1 s. Online Material: Velocity models used in computing theoretical site response.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2012-06-01
    Description: The recent Mw 6.3 destructive L’Aquila earthquake has further stimulated the improvement of the Italian operational earthquake forecasting capability at different time intervals. Here, we describe a medium-term (10-year) forecast model for Mw≥5.5 earthquakes in Italy that aims at opening new possibilities for risk mitigation purposes. While a longer forecast yielded by the national seismic-hazard map is the primary component in establishing the building code, a medium-term earthquake forecast model may be useful to prioritize additional risk mitigation strategies such as the retrofitting of vulnerable structures. In particular, we have developed an earthquake occurrence model for a 10-year forecast that consists of a weighted average of time-independent and different types of available time-dependent models, based on seismotectonic zonations and regular grids. The inclusion of time-dependent models marks a difference with the earthquake occurrence model of the national seismic-hazard map, and it is motivated by the fact that, at the 10-year scale, the contribution of time-dependency in the earthquake occurrence process may play a major role. The models are assembled through a simple averaging scheme whereby each model is weighted through the results of a retrospective testing phase similar to the ones carried out in the framework of the Collaboratory for the Study of Earthquake Predictability. In this way, the most hazardous Italian areas in the next ten years will arise from a combination of distinct models that place more emphasis on different aspects of the earthquake occurrence process, such as earthquake clustering, historical seismic rate, and the presence of delayed faults capable of large events. Finally, we report new challenges and possible developments for future updating of the model.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We have simulated the impact of the tsunami generated by the Late Bronze Age (LBA) volcanic eruption of Santorini on the Eastern Mediterranean. Two different tsunami triggering mechanisms were considered: a caldera collapse and pyroclastic flows/surges entering the sea. Simulations include the ‘‘worst’’ input conditions in order to evaluate the maximum possible impacts, but also ‘‘lighter’’ input conditions, compatible with the lack of any tsunami trace on the Northern coasts of Crete. In all the simulations, tsunami propagation is mainly confined to the Southern Aegean. Outside the Aegean, the tsunami impact was negligible and not responsible for the slide-slumping of fine-grained pelagic and/or hemipelagic sediments considered the sources of the sporadically located seadeposits in the Ionian Sea and of the widespread megaturbidite deposits localized in the Ionian and Sirte Abyssal Plains.
    Description: Published
    Description: L18607
    Description: JCR Journal
    Description: reserved
    Keywords: Minoan tsunami ; Santorini ; eastern Mediterranean ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Agu
    In:  Panza, G. F. (2006), Comment on ‘‘Rarely observed short-period (5– 10 s) suboceanic Rayleigh waves propagating across the Tyrrhenian Sea’’ by A. Rovelli et al., Geophys. Res. Lett., 33, L10309, doi:10.1029/2005GL025584.
    Publication Date: 2017-04-04
    Description: We thank Giuliano F. Panza for the interest demonstrated in our study and for having pointed out the error in Figure 3 of Rovelli et al. [2004, hereinafter referred to as R2004GRL]. In his comment, Panza writes that a similar phenomenon was already reported by him in an old paper. This statement is not correct and we feel that probably we did not emphasized enough the innovative character of R2004GRL. His comment gives us the opportunity of better explaining that the phenomenon we observe in the Tyrrhenian Sea is different from those studied by Panza and coauthors.
    Description: Published
    Description: L10310
    Description: JCR Journal
    Description: reserved
    Keywords: Reply ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Knowledge of past precursor patterns is crucial for the correct interpretation of monitoring data and reliable volcano forecasting. In the case of Vesuvius, one of the world’s riskiest volcanoes, very little information is available about unrest signals following long periods of quiescence. The translation and analysis of three Latin treatises written from eye-witnesses immediately after the A.D. 1631 subplinian eruption allowed us to reconstruct the sequence of precursors. The progression in the signals was remarkably clear starting at least two to three weeks before the event. Widespread gas emission from the ground coupled with deformation was followed by an increase in seismic activity in the eight days before the eruption. Seismicity escalated both in frequency and intensity in the night before the eruption, heralding the opening of fissures on the volcanic cone. The details of phenomena occurring in the medium-term (months before the eruption) are difficult to evaluate, though it is worth noticing that no major tectonic earthquakes were felt in the area of the volcano. Civil protection preparedness plans should be organized in order to complete the evacuation of people in a time span significantly shorter than the duration of expected short-term precursors.
    Description: Published
    Description: L18317
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; A. D. 1631 ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The 17 January 2002 fissure eruption of Mount Nyiragongo, Democratic Republic of Congo, produced lava flows which entered and devastated the densely inhabited town of Goma. The 2002 and previous 1977 eruptions demonstrate the high level of volcanic risk in the area. We present an analysis of the susceptibility to lava flow invasion in Goma, by means of computer simulations based on the steepest descent path and probabilisticcomputed flow spreading and obstacle overcoming. The DEM is obtained from a topographic map of Goma by using the DEST algorithm. The numerical results show the distribution of probable lava flow paths from possible vents in the investigated topographic domain. Numerical simulations are validated through comparison with the mapped paths of the 2002 lava flows in Goma. The subsequent investigation includes the analysis of (1) hypothetical lava flow paths from ephemeral vents on the edge of the 2002 lava flows, (2) paths from venting along the hypothetical extension of the 2002 fissures, (3) paths in case of lava flow arrival in town from the north, and (4) changes induced by the presence of the solidified 2002 lava field. The results show the susceptibility of the different parts of the town of Goma to be invaded by future lava flows, and reveal the existence of a large area in town with minimum susceptibility and which can be invaded only in case of venting within it. The areas destroyed by the 2002 lava flows are predicted to be characterized by maximum susceptibility to lava flow invasion.
    Description: Published
    Description: B06202
    Description: JCR Journal
    Description: reserved
    Keywords: Computer simulations ; Nyiragongo volcano ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Agu
    Publication Date: 2017-04-04
    Description: Numerical simulations support the occurrence of a catastrophic tsunami impacting all of the eastern Mediterranean in early Holocene. The tsunami was triggered by a debris avalanche from Mt. Etna (Sicily, Italy) which entered the Ionian Sea in the order of minutes. Simulations show that the resulting tsunami waves were able to destabilize soft marine sediments across the Ionian Sea floor. This generated the well-known, sporadically located, ‘‘homogenite’’ deposits of the Ionian Sea, and the widespread megaturbidite deposits of the Ionian and Sirte Abyssal Plains. It is possible that, 8 ka B.P., the Neolithic village of Atlit-Yam (Israel) was abandoned because of impact by the same Etna tsunami. Two other Pleistocenic megaturbidite deposits of the Ionian Sea can be explained by previous sector collapses from the Etna area.
    Description: Published
    Description: L22608
    Description: JCR Journal
    Description: reserved
    Keywords: tsunami ; collapses ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Campi Flegrei caldera, including the extremely urbanised city of Naples, is the most risky volcanic area in the World. The last eruption in the area (1538) occurred at the end of some decades of ground uplift, superimposed to secular subsidence. During the last four decades, it experienced a huge uplift phase, reaching about 3.5 m in 1985, when a subsidence phase started. Recent geodetic data demonstrate that such a subsidence phase has terminated, and a new uplift episode started in November 2004, with a low but increasing rate leading to about 0.04 m of uplift till the end of October 2006. A new indicator, based on the monitoring of maximum horizontal to vertical displacement ratio with continuous GPS, indicates that this uplift is likely to be associated with input of magmatic fluids from a shallow magma chamber. The method is promising to monitor magma intrusion processes, at this and other volcanoes. Citation: Troise, C., G. De Natale, F. Pingue,
    Description: Published
    Description: L03301
    Description: 3.6. Fisica del vulcanismo
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei caldera ; magmatic processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: An application of LiDAR (Light Detection and Ranging) intensity for the identification and mapping of different lava flows from the Mt. Etna (Italy) active volcano is described. In September 2004 an airborne LiDAR survey was flown over summit sectors of Mt. Etna. The information derived from LiDAR intensity values was used to compare the lava flows with respect to their age of emplacement. Analysed lava flows vary in age between those dating prior to AD 1610 and those active during the survey (2004-2005 eruptions). The target-emitter distance, as well as surface roughness and texture at the LiDAR footprint scale, are the main parameter controlling the intensity response of lava flows. Variations in the roughness and texture of surfaces at a meter scale result from two main processes, initial lava cooling and subsequent surface weathering; both lead to variations in the original surface roughness of the flow. In summary: i) initially, from the time of emplacement, the LiDAR intensity of lava flow surfaces decreases; ii) about 6 years after emplacement the LiDAR intensity of lava surfaces starts to increase with the age of flows. LiDAR capability in terms of geometric (accuracy of ~ 1 m in plan position and less than 1 m in elevation) and spectral (LiDAR intensity depends on surface reflection at λ= 1.064 μm) information can thus be effectively used to map lava flows and define a relative chronology of lava emplacement.
    Description: Published
    Description: open
    Keywords: Lava flow ; LiDAR ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...