GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2021-03-30
    Beschreibung: Anthropogenic atmospheric loading of CO2 raises concerns about combined effects of increasing ocean temperature and acidification, on biological processes. In particular, the response of appendicularian zooplankton to climate change may have significant ecosystem implications as they can alter biogeochemical cycling compared to classical copepod dominated food webs. However, the response of appendicularians to multiple climate drivers and effect on carbon cycling are still not well understood. Here, we investigated how gelatinous zooplankton (appendicularians) affect carbon cycling of marine food webs under conditions predicted by future climate scenarios. Appendicularians performed well in warmer conditions and benefited from low pH levels, which in turn altered the direction of carbon flow. Increased appendicularians removed particles from the water column that might otherwise nourish copepods by increasing carbon transport to depth from continuous discarding of filtration houses and fecal pellets. This helps to remove CO2 from the atmosphere, and may also have fisheries implications.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 49 . pp. 1435-1445.
    Publikationsdatum: 2019-09-23
    Beschreibung: Microzooplankton have received increased attention as an important trophic link between the microbial loop and calanoid copepods. On the basis of food size spectra overlap in some microzooplankton groups and calanoid copepods, however, such microzooplankton could function as competitors rather than as food for calanoid copepods (intraguild prey). Mixotrophic flagellates presumably represent a link between the microbial loop and the micro and mesozooplankton. We investigated the effects of microzooplankton and mixotrophy by altering the presence of a heterotrophic dinoflagellate and of a mixotrophic nanoflagellate in artificial food webs with calanoid copepods as terminal consumers. Overall system productivity was manipulated by two levels of nutrient enrichment. The heterotrophic dinoflagellate drastically reduced the nanophytoplankton and enhanced the reproduction of the copepods, suggesting that its role as a competitor is negligible compared to its function as a trophic link. In spite of the presence of heterotrophic nanoflagellates, the mixotroph had a strong negative effect on the picophytoplankton and (presumably) on bacterial biomass. At the same time, the mixotroph enhanced the atomic C:N ratio of the seston biomass, indicating a higher efficiency in overall primary production. Copepod reproduction was enhanced in the presence of the mixotrophic nanoflagellate. Results did not support predictions of the intraguild predation theory: The ratios of the intraguild predators and their preys were not affected by overall system productivity
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...