GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 32 (9). pp. 1406-1419.
    Publication Date: 2021-03-19
    Description: The North Atlantic Ocean plays a major role in climate change not the least due to its importance in CO2 uptake and thus natural carbon sequestration. The CO2 concentration in its surface waters, which determines the ocean's CO2 sink/source function, varies on seasonal and interannual timescales and is mainly driven by air‐sea gas exchange, temperature variability and biological production/respiration. The variability in stable carbon isotope signatures can provide further insight and help to improve the understanding of the controls of the surface ocean carbon system. In this work, a cavity ringdown spectrometer was coupled to a classical, equilibrator‐based pCO2 system on a VOS line that regularly sails across the subpolar North Atlantic between North America and Europe. From 2012 to 2014, a 3‐year time series of underway surface δ13C(CO2) data was obtained along with continuous measurements of temperature, salinity and fCO2. We perform a decomposition of thermal and non‐thermal drivers of fCO2 and δ13C(CO2). The direct measurement of the surface ocean δ13C(CO2) allows us to estimate the mass flux and also the stable carbon isotope fractionation during air‐sea gas exchange. While the CO2 mass flow was in the range of 1 − 2 mol CO2 m−2 yr−1 on the shelves and 2.5 − 3.5 mol CO2 m−2 yr−1 in the open ocean, the isotope signature of this CO2 flux with respect to the sea surface ranged from −2.6 ± 1.4‰ on the shelves to −6.6 ± 0.9‰ in the western and −4.5 ± 0.9‰ in the eastern part of the open ocean section.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-19
    Description: Gelatinous zooplankton hold key functions in the ocean and have been shown to significantly influence the transport of organic carbon to the deep sea. We discovered a gelatinous, flux‐feeding polychaete of the genus Poeobius in very high abundances in a mesoscale eddy in the tropical Atlantic Ocean, where it co‐occurred with extremely low particle concentrations. Subsequent analysis of an extensive in situ imaging dataset revealed that Poeobius sp. occurred sporadically between 5°S–20°N and 16°W–46°W in the upper 1000 m. Abundances were significantly elevated and the depth distribution compressed in anticyclonic modewater eddies (ACMEs). In two ACMEs, high Poeobius sp. abundances were associated with strongly reduced particle concentrations and fluxes in the layers directly below the polychaete. We discuss possible reasons for the elevated abundances of Poeobius sp. in ACMEs and provide estimations showing that a single zooplankton species can completely intercept the downward particle flux by feeding with their mucous nets, thereby substantially altering the biogeochemical setting within the eddy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (1). pp. 171-184.
    Publication Date: 2020-02-06
    Description: The tropical Atlantic exerts a major influence in climate variability through strong air-sea interactions. Within this region, the eastern side of the equatorial band is characterized by strong seasonality, whereby the most prominent feature is the annual development of the Atlantic Cold Tongue (ACT). This band of low sea surface temperatures (∼22-23°C) is typically associated with upwelling-driven enhancement of surface nutrient concentrations and primary production. Based on a detailed investigation of the distribution and sea-to-air fluxes of N2O in the eastern equatorial Atlantic (EEA), we show that the onset and seasonal development of the ACT can be clearly observed in surface N2O concentrations, which increase progressively as the cooling in the equatorial region proceeds during spring-summer. We observed a strong influence of the surface currents of the EEA on the N2O distribution, which allowed identifying “high” and “low” concentration regimes that were, in turn, spatially delimited by the extent of the warm eastward-flowing North Equatorial Countercurrent and the cold westward-flowing South Equatorial Current. Estimated sea-to-air fluxes of N2O from the ACT (mean 5.18±2.59 µmol m−2 d−1) suggests that in May-July 2011 this cold-water band doubled the N2O efflux to the atmosphere with respect to the adjacent regions, highlighting its relevance for marine tropical emissions of N2O. This article is protected by copyright. All rights reserved.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 31 (1). pp. 181-196.
    Publication Date: 2020-08-04
    Description: We present a detailed quality assessment of a novel underwater sensor for the measurement of CO2 partial pressure (pCO2) based on surface water field deployments carried out between 2008 and 2011. The commercially available sensor, which is based on membrane equilibration and NDIR spectrometry is small and can be integrated into mobile platforms. It is calibrated in water against a proven flow-through pCO2 instrument within a custom-built calibration setup. The aspect of highest concern with respect to achievable data quality of the sensor is the compensation for signal drift inevitably connected to absorption measurements. We use three means to correct for drift effects: (i) a filter correlation or dual-beam setup, (ii) regular zero gas measurements realized automatically within the sensor and (iii) a zero-based transformation of two sensor calibrations flanking the time of sensor deployment. Three sensors were tested against an underway pCO2 system during two major research cruises providing an in situ temperature range from 7.4 to 30.1°C and pCO2 values between 289 and 445 μatm. The average difference between sensor and reference pCO2 was found to be -0.6 ± 3 μatm with a RMSE of 3.7 μatm.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 30 . pp. 112-126.
    Publication Date: 2020-08-04
    Description: In recent years, profiling floats, which form the basis of the successful international Argo observatory, are also being considered as platforms for marine biogeochemical research. This study showcases the utility of floats as a novel tool for combined gas measurements of CO2 partial pressure (pCO2) and O2. These float prototypes were equipped with a small-sized and submersible pCO2 sensor and an optode O2 sensor for high resolution measurements in the surface ocean layer. Four consecutive deployments were carried out during Nov. 2010 and June 2011 near the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic. The profiling float performed upcasts every 31 h while measuring pCO2, O2, salinity, temperature and hydrostatic pressure in the upper 200 m of the water column. In order to maintain accuracy, regular pCO2 sensor zeroings at depth and surface, as well as optode measurements in air, were performed for each profile. Through the application of data processing procedures (e.g., time-lag correction) accuracies of float-borne pCO2 measurements were greatly improved (10 – 15 μatm for water column and 5 μatm for surface measurements). O2 measurements yielded an accuracy of 2 μmol kg−1. First results of this pilot study show the possibility of using profiling floats as a platform for detailed and unattended observations of the marine carbon and oxygen cycle dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 μatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 μatm were observed at the surface and 〉3000 μatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 μatm) in comparison to a low pCO2 outer fjord station (ca. 600 μatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-04
    Description: Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-04
    Description: Sub-micron marine aerosol particles (PM1) were collected over the period 22 June–21 July 2011 during the RV MARIA S. MERIAN cruise MSM 18/3, which travelled from the Cape Verdean island of São Vicente to Gabon, in the process crossing the tropical Atlantic Ocean with its equatorial upwelling regime. According to air mass origin and the chemical composition of the sampled aerosol particles, three main regimes could be established. Aerosol particles in the first part of the cruise were mainly of marine origin (Region I). In the second part of the cruise, marine influences mixed with increasing influence from biomass burning (Region II). In the final part of the cruise, which approached the African mainland, the biomass burning influence became dominant (Region III). Generally, aerosol particles were dominated by sulfate (caverage = 2.0 μg m−3) and ammonium ions (caverage = 0.7 μg m−3), which were well-correlated and increased slightly over the duration of the cruise. High concentrations of water-insoluble organic carbon (WISOC; caverage = 0.4 μg m−3) were found, most likely as a result of the high oceanic productivity in this region. Water-soluble organic carbon (WSOC) concentrations increased from 0.26 μg m−3 in Region I to 2.3 μg m−3 in Region III, most likely as a result of biomass burning influences. The major organic aerosol constituents were oxalic acid, methanesulfonic acid (MSA), and aliphatic amines. MSA concentrations were quite constant during the cruise (caverage = 42 ng m−3). Aliphatic amines were most abundant in Region I, with concentrations of ~ 20 ng m−3. Oxalic acid showed the opposite trend, with average concentrations of 12 ng m−3 in Region I and 158 ng m−3 in Region III. The α-dicarbonyl compounds glyoxal and methylglyoxal were detected in the aerosol particles in the low ng m−3 range and were closely correlated with oxalic acid. MSA and aliphatic amines arise from biogenic marine sources, whereas oxalic acid and the α-dicarbonyl compounds were attributed to biomass burning. Concentrations of n-alkanes increased from 0.8 to 4.7 ng m−3 over the duration of the cruise. PAHs and hopanes were abundant only in Region III (caverage of PAHs = 0.13 ng m−3; caverage of hopanes = 0.19 ng m−3). Levoglucosan was identified in several samples obtained in Region III, with caverage = 1.9 ng m−3, which points to (aged) biomass burning influences. The organic compounds quantified in this study could explain 8.3 % of WSOC in Regions I, where aliphatic amines and MSA dominated, 3.7 % of WSOC in Region II and 2.5 % of WSOC in Region III, where oxalic acid dominated.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 32 . pp. 2305-2317.
    Publication Date: 2020-08-04
    Description: We investigated the effect of hydrostatic pressure of up to 6000 dbar on Aanderaa and Sea-Bird oxygen optodes both in the laboratory and in the field. The overall pressure response is a reduction in the O2 reading by 3 – 4 % per 1000 dbar which is closely linear with pressure and increases with temperature. Closer inspection reveals two superimposed processes with opposite effect: an O2-independent pressure response on the luminophore which increases optode O2 readings and an O2-dependent change in luminescence quenching which decreases optode O2 readings. The latter process dominates and is mainly due to a shift in the equilibrium between sensing membrane and sea water under elevated pressures. If only the dominant O2-dependent process is considered, Aanderaa and Sea-Bird optodes differ in their pressure response. Compensation of the O2-independent process, however, yields a uniform O2 dependence for Aanderaa optodes with standard foil and fast-response foil as well as Sea-Bird optodes. A new scheme to calculate optode O2 from raw data is proposed to account for the two processes. The overall uncertainty of the optode pressure correction amounts to 0.3 % per 1000 dbar, mainly due to variability between sensors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...