GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford Univ. Press  (3)
  • Finnish Zoological and Botanical Publ. Board  (2)
  • AMS (American Meteorological Society)  (1)
  • 1
    Publication Date: 2021-02-08
    Description: Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities-key information for the management and conservation of ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-26
    Description: The study aims at the identification of areas in the Baltic Sea from where potential pollution is transported to vulnerable regions. Generally, there is higher risk of ship accidents along the shipping routes and along the approaching routes to the harbors. The spreading of harmful substances is mainly controlled by prevailing atmospheric conditions and wind-induced local sea surface currents. Especially, spawning, nursery and tourist areas are considered high-vulnerable areas. With sophisticated high resolution numerical models, the complex current system of the Baltic Sea has been simulated, and with subsequent drift modeling areas of reduced risk or high-risk areas for environmental pollution could be identified. In a further step, optimum fairways of reduced risk could be obtained by following probability minima of coastal hits or maxima for the time it takes to reach the coast. The results could be useful for environmental management for the maritime industry to minimize the risk of environmental pollution in case of ship accidents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-26
    Description: In the Baltic Sea, two genetically distinct cod populations occur, the eastern and the western Baltic cod. Since 2006, cod abundance has increased substantially in the Arkona Basin (SD 24), the potential mixing area between the two stocks management areas, presumably due to spill-over from the eastern stock. In this study, the spatio-temporal dynamics of stock mixing were analysed using shape analysis of archived otoliths. Further, the impact of eastern cod immigration on recruitment in the western Baltic Sea was investigated using hydrographic drift modelling. The percentage of eastern Baltic cod in the Arkona Basin increased from ca. 30% before 2005 to 〉80% in recent years. Geographic patterns in stock mixing with a pronounced east–west trend suggest that immigration occurs north of Bornholm, but propagates throughout the Arkona Basin. The immigration cannot be attributed to spawning migration, as no seasonal trend in stock mixing was observed. Based on environmental threshold levels for egg survival and time-series of hydrography data, the habitat suitable for successful spawning of eastern cod was estimated to range between 20 and 50% of the maximum possible habitat size, limited by primarily low salinity. Best conditions occurred irregularly in May–end June, interspersed with years where successful spawning was virtually impossible. Using a coupled hydrodynamic modelling and particle-tracking approach, the drift and survival of drifters representing eastern cod eggs was estimated. On average, 19% of the drifters in the Arkona Basin survive to the end of the yolk-sac stage, with mortality primarily after bottom contact due to low salinity. The general drift direction of the surviving larvae was towards the east. Therefore, it is the immigration of eastern cod, rather than larval transport, that contributes to cod recruitment in the western Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Finnish Zoological and Botanical Publ. Board
    In:  Boreal Environment Research, 7 . pp. 405-415.
    Publication Date: 2019-09-23
    Description: From numerical model simulations, fluxes of volume, heat and salt have been calculated for different hydrographical sections in areas which are important for the deep water exchange in the Baltic Sea. The calculated deep water flow in the Arkona basin is in accordance with independent estimations obtained from profile data. Model results reveal strong seasonal and inter-annual variability in the calculated fluxes. The variability is governed by the prevailing atmospheric conditions. It is found that the strength of the upper layer low saline flow in the Arkona Basin which on average is directed to the west, opposite to the mean wind direction, is compensated by a high saline flow in deeper layers. The upper layer flow is a combination of a flow forced by the fresh water surplus directed to the west, and a wind-driven part. In dependence on the prevailing wind conditions the resulting flow is either increased or decreased. Furthermore, increasing upper layer flow results in an increased lower layer flow in opposite direction. The annual mean flow is weakly correlated with the annual mean runoff to the Baltic Sea. In accordance with the mean circulation, the flow through the Bornholm Channel is on average directed to the east, and south of Bornholm to the west indicating an import of heat and salt to the Bornholm Basin through the Bornholm Channel and an export south of Bornholm. Flux characteristics change further downstream in the Stolpe Channel. The volume flow in the upper layer shows a strong seasonal signal. During autumn to spring the flow is mainly directed to the east, in summer, the flow direction is reversed. Flow in westerly directions is related to increased lower layer flow in easterly directions. On average, the net flow through the Stolpe channel is directed to the east which is in accordance with the mean circulation. Calculated fluxes show high intra- and inter-annual variability with no obvious trend during the simulation period. The variability of the deep water stratification in the deep basins of the Baltic Sea is directly controlled by the changing flux characteristics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The sudden occurrence of the ctenophore Mnemiopsis leidyi has been reported recently from different regions of the Baltic Sea and it has been suggested that the species has invaded the whole basin. Here we provide the first set of quantitative data of seasonal diet composition and life history traits of M. leidyi and its predatory role in the pelagic ecosystem of the Western Baltic Sea. The size structure of the species appeared to be dominated by small size classes and only a few adults were as large as those reported in the native region of the species and in other invaded areas. We show that the species has a high preference for small-sized and slow swimming prey, mainly during the winter low temperature period. Barnacle nauplii appeared to be the main source of carbon for the over-wintering population of M. leidyi. A preference for copepods was only found during August when these prey contributed up to 20% of the gut composition. In summer, planula larvae of the jellyfish Aurelia aurita were the most abundant prey in the gut content (feeding rate of 621 ind. ctenophore−1day−1). We further found that at highest densities of the species, in summer, a significant predation on its larvae occurs, this being the major carbon source of adults. Overall, these results are discussed in the context of trade-offs M. leidyi faces in the new environment and adverse environmental conditions, which are likely forcing the species toward reduced sizes and also probably reducing its potential predatory impact in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-09
    Description: The Baltic Sea Experiment (BALTEX) is one of the five continental–scale experiments of the Global Energy and Water Cycle Experiment (GEWEX). More than 50 research groups from 14 European countries are participating in this project to measure and model the energy and water cycle over the large drainage basin of the Baltic Sea in northern Europe. BALTEX aims to provide a better understanding of the processes of the climate system and to improve and to validate the water cycle in regional numerical models for weather forecasting and climate studies. A major effort is undertaken to couple interactively the atmosphere with the vegetated continental surfaces and the Baltic Sea including its sea ice. The intensive observational and modeling phase BRIDGE, which is a contribution to the Coordinated Enhanced Observing Period of GEWEX, will provide enhanced datasets for the period October 1999–February 2002 to validate numerical models and satellite products. Major achievements have been obtained in an improved understanding of related exchange processes. For the first time an interactive atmosphere–ocean–land surface model for the Baltic Sea was tested. This paper reports on major activities and some results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...