GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (20)
  • Copernicus Publications (EGU)  (20)
  • ELSEVIER SCI LTD
  • 11
    Publication Date: 2020-02-06
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multi-decadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the 20th Century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multi-decadal variations associated with the Pacific Decadal Oscillation and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multi-decadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean Dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 28 (24). pp. 9697-9706.
    Publication Date: 2020-08-04
    Description: The upper tropical Atlantic Ocean has markedly warmed since the 1960s. It has been shown that this warming was not due to local heat fluxes, and that the trade winds that drive the coastal and equatorial upwelling have intensified rather than weakened. Remote forcing might thus have played an important role. Here model experiments are used to investigate the contribution from an increased inflow of warm Indian Ocean water through Agulhas leakage. A high-resolution hindcast experiment with interannually varying forcing for the time period 1948 to 2007, in which Agulhas leakage increases by about 45% from the 1960s to the early 2000s, reproduces the observed warming trend. To tease out the role of Agulhas leakage, a sensitivity experiment designed to only increase Agulhas leakage is used. Compared to a control simulation it shows a pronounced warming in the upper tropical Atlantic Ocean. A Lagrangian trajectory analysis confirms that a significant portion of Agulhas leakage water reaches the upper 300m of the tropical Atlantic Ocean within two decades, and that the tropical Atlantic warming in the sensitivity experiment is mainly due to water of Agulhas origin. Therefore, it is suggested that the increased trade winds since the 1960s favor upwelling of warmer subsurface waters, which in parts originate from the Agulhas, leading to higher SSTs in the tropics
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 39 . pp. 2417-2435.
    Publication Date: 2020-08-04
    Description: The Agulhas Current system has been analyzed in a nested high-resolution ocean model and compared to observations. The model shows good performance in the western boundary current structure and the transports off the South African coast. This includes the simulation of the northward-flowing Agulhas Undercurrent. It is demonstrated that fluctuations of the Agulhas Current and Undercurrent around 50–70 days are due to Natal pulses and Mozambique eddies propagating downstream. A sensitivity experiment that excludes those upstream perturbations significantly reduces the variability as well as the mean transport of the undercurrent. Although the model simulates undercurrents in the Mozambique Channel and east of Madagascar, there is no direct connection between those and the Agulhas Undercurrent. Virtual float releases demonstrate that topography is effectively blocking the flow toward the north.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 . pp. 2307-2319.
    Publication Date: 2018-04-10
    Description: Processes that influence the volume and heat transport across the Greenland–Scotland Ridge system are investigated in a numerical model with ° horizontal resolution. The focus is on the sensitivity of cross-ridge transports and the reaction of the subpolar North Atlantic Ocean circulation to changes in wind stress and buoyancy forcing on seasonal to interannual timescales. A general relation between changes in wind stress or cross-ridge density contrasts and the overturning transport of Greenland–Iceland–Norwegian Seas source water is established from a series of idealized experiments. The relation is used subsequently to interpret changes in an experiment over the years 1992–97 with realistic forcing. On seasonal and interannual timescales there is a clear correlation between heat flux and wind stress curl variability. The realistic model suggests a steady decrease in the strength of the cyclonic subpolar gyre of the North Atlantic with a corresponding decrease in heat transport during the 1990s
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 21 (14). pp. 3433-3452.
    Publication Date: 2019-09-23
    Description: Observed sea surface temperatures (SSTs) in the North Atlantic from 1958 through 2000, as well as data from an ocean model simulation driven with the atmospheric variability observed during the same period, are examined using multichannel singular spectrum analysis. The two leading oscillatory modes are associated with a multidecadal and a quasi-decadal period. The former is connected to a basinwide uniform SST pattern and changes in the deep North Atlantic meridional overturning circulation. The quasi-decadal mode involves a tripolar SST anomaly pattern forced by atmospheric variability with a spatial structure resembling that of the North Atlantic Oscillation (NAO). The upper ocean’s dynamical response to this NAO variability provides an instantaneous positive feedback to the SST pattern, while a delayed negative feedback is due to shallow overturning circulation anomalies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-02-08
    Description: A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced. A first version of FOCI consists of a global high-top atmosphere (ECHAM6.3) and an ocean model (NEMO3.6) as well as sea ice (LIM2) and land surface model components (JSBACH), which are coupled through the OASIS3-MCT software package. FOCI includes a number of optional modules which can be activated depending on the scientific question of interest. In the atmosphere, interactive stratospheric chemistry can be used (ECHAM6-HAMMOZ) to study, for example, the effects of the ozone hole on the climate system. In the ocean, a biogeochemistry model (MOPS) is available to study the global carbon cycle. A unique feature of FOCI is the ability to explicitly resolve mesoscale ocean eddies in specific regions. This is realized in the ocean through nesting; first examples for the Agulhas Current and the Gulf Stream systems are described here. FOCI therefore bridges the gap between coarse-resolution climate models and global high-resolution weather prediction and ocean-only models. It allows to study the evolution of the climate system on regional and seasonal to (multi-) decadal scales. The development of FOCI resulted from a combination of the long-standing expertise in ocean and climate modeling in several research units and divisions at GEOMAR. FOCI will thus be used to complement and interpret long-term observations in the Atlantic, enhance the process understanding of the role of mesoscale oceanic eddies for large-scale oceanic and atmospheric circulation patterns, study feedback mechanisms with stratospheric processes, estimate future ocean acidification, improve the simulation of the Atlantic Meridional Overturning Circulation changes and their influence on climate, ocean chemistry and biology. In this paper we present both the scientific vision for the development of FOCI as well as some technical details. This includes a first validation of the different model components using several configurations of FOCI. Results show that the model in its basic configuration runs stably under pre-industrial control as well as under historical forcing, and produces a mean climate and variability which compares well with observations, reanalysis products and other climate models. The nested configurations reduce some long-standing biases in climate models and are an important step forward to include the atmospheric response in multi-decadal eddy-rich configurations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-08
    Description: Mesoscale eddies can be strengthened by the absorption of submesoscale eddies resulting from mixed-layer baroclinic instabilities. This is shown for mesoscale eddies in the Agulhas Current system by investigating the kinetic energy cascade with a spectral and a coarse-graining approach in two model simulations of the Agulhas region. One simulation resolves mixed-layer baroclinic instabilities and one does not. When mixed-layer baroclinic instabilities are included, the largest submesoscale near-surface fluxes occur in winter-time in regions of strong mesoscale activity for upscale as well as downscale directions. The forward cascade at the smallest resolved scales occurs mainly in frontogenetic regions in the upper 30 m of the water column. In the Agulhas ring path, the forward cascade changes to an inverse cascade at a typical scale of mixed-layer eddies (15 km). At the same scale, the largest sources of the upscale flux occur. After the winter, the maximum of the upscale flux shifts to larger scales. Depending on the region, the kinetic energy reaches the mesoscales in spring or early summer aligned with the maximum of mesoscale kinetic energy. This indicates the importance of submesoscale flows for the mesoscale seasonal cycle. A case study shows that the underlying process is the mesoscale absorption of mixed-layer eddies. When mixed-layer baroclinic instabilities are not included in the simulation, the open-ocean upscale cascade in the Agulhas ring path is almost absent. This contributes to a 20 %-reduction of surface kinetic energy at mesoscales larger than 100 km when submesoscale dynamics are not resolved by the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 49 (5). pp. 1141-1157.
    Publication Date: 2022-01-31
    Description: To model tracer spreading in the ocean, Lagrangian simulations in an offline framework are a practical and efficient alternative to solving the advective–diffusive tracer equations online. Differences in both approaches raise the question of whether both methods are comparable. Lagrangian simulations usually use model output averaged in time, and trajectories are not subject to parameterized subgrid diffusion, which is included in the advection–diffusion equations of ocean models. Previous studies focused on diffusivity estimates in idealized models but could show that both methods yield similar results as long as the deformations-scale dynamics are resolved and a sufficient amount of Lagrangian particles is used. This study compares spreading of an Eulerian tracer simulated online and a cloud of Lagrangian particles simulated offline with velocities from the same ocean model. We use a global, eddy-resolving ocean model featuring 1/20° horizontal resolution in the Agulhas region around South Africa. Tracer and particles were released at one time step in the Cape Basin and below the mixed layer and integrated for 3 years. Large-scale diagnostics, like mean pathways of floats and tracer, are almost identical and 1D horizontal distributions show no significant differences. Differences in vertical distributions, seen in a reduced vertical spreading and downward displacement of particles, are due to the combined effect of unresolved subdaily variability of the vertical velocities and the spatial variation of vertical diffusivity. This, in turn, has a small impact on the horizontal spreading behavior. The estimates of eddy diffusivity from particles and tracer yield comparable results of about 4000 m2 s−1 in the Cape Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-01-31
    Description: The westerlies and trade winds over the South Atlantic and Indian Ocean are important drivers of the regional oceanography around southern Africa, including features such as the Agulhas Current, the Agulhas leakage, and the Benguela upwelling. Agulhas leakage constitutes a fraction of warm and saline water transport from the Indian Ocean into the South Atlantic. The leakage is stronger during intensified westerlies. Here, we analyze the wind stress of different observational and modeled atmospheric data sets (covering the last 2 millennia, the recent decades, and the 21st century) with regard to the intensity and position of the southeasterly trades and the westerlies. The analysis reveals that variations of both wind systems go hand in hand and that a poleward shift of the westerlies and trades and an intensification of westerlies took place during the recent decades. Furthermore, upwelling in South Benguela is slightly intensified when trades are shifted poleward. Projections for strength and position of the westerlies in the 21st century depend on assumed CO2 emissions and on their effect relative to the ozone forcing. In the strongest emission scenario (RCP8.5) the simulations show a further southward displacement, whereas in the weakest emission scenario (RCP2.6) a northward shift is modeled, possibly due to the effect of ozone recovery dominating the effect of anthropogenic greenhouse forcing. We conclude that the Agulhas leakage has intensified during the last decades and is projected to increase if greenhouse gas emissions are not reduced. This will have a small impact on Benguela upwelling strength and may also have consequences for water mass characteristics in the upwelling region. An increased contribution of Agulhas water to the upwelling water masses will import more preformed nutrients and oxygen into the upwelling region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-01-31
    Description: Satellite observations and output from a high-resolution ocean model are used to investigate how the Loop Current in the Gulf of Mexico affects the Gulf Stream transport through the Florida Straits. We find that the expansion (contraction) of the Loop Current leads to lower (higher) transports through the Straits of Florida. The associated surface velocity anomalies are coherent from the southwestern tip of Florida to Cape Hatteras. A simple continuity-based argument can be used to explain the link between the Loop Current and the downstream Gulf Stream transport: as the Loop Current lengthens (shortens) its path in the Gulf of Mexico, the flow out of the Gulf decreases (increases). Anomalies in the surface velocity field are first seen to the southwest of Florida and within 4 weeks propagate through the Florida Straits up to Cape Hatteras and into the Gulf Stream Extension. In both the observations and the model this propagation can be seen as pulses in the surface velocities. We estimate that the Loop Current variability can be linked to a variability of several Sverdrups (1Sv = 10(6) m(3) s(-1)) through the Florida Straits. The exact timing of the Loop Current variability is largely unpredictable beyond a few weeks and its variability is therefore likely a major contributor to the chaotic/intrinsic variability of the Gulf Stream. However, the time lag between the Loop Current and the flow downstream of the Gulf of Mexico means that if a lengthening/shortening of the Loop Current is observed this introduces some predictability in the downstream flow for a few weeks.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...