GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (29)
  • Deutscher Wetterdienst  (2)
  • Bornträger  (1)
  • 11
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 326-344.
    Publication Date: 2018-04-05
    Description: Global mean and eddy fields from a four-year experiment with a 1/6° × 1/5° horizontal resolution implementation of the CME North Atlantic model are presented. The time-averaged wind-driven and thermohaline circulation in the model is compared to the results of a 1/3° × 2/5° model run in very similar configuration. In general, the higher resolution results are found to confirm that the resolution of previous CME experiments is sufficient to describe many features of the large-scale circulation and water mass distribution quite well. While the increased resolution does not lead to large changes in the mean flow patterns, the variability in the model is enhanced significantly. On the other hand, however, not all aspects of the circulation have improved with resolution. The Azores Current Frontal Zone with its variability in the eastern basin is still represented very poorly. Particular attention is also directed toward the unrealistic stationary anticyclones north of Cape Hatteras and in the Gulf of Mexico.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Deutscher Wetterdienst
    In:  In: Deutsche Meteorologen-Tagung 1992 vom 16. bis 20. März 1992 in Berlin. Annalen der Meteorologie, 27 . Deutscher Wetterdienst, Offenbach am Main, Germany, pp. 216-217. ISBN 978-3-88148-271-4
    Publication Date: 2018-01-23
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Deutscher Wetterdienst
    In:  In: Deutsche Meteorologen-Tagung 1989 vom 16. bis 19. Mai 1989 in Kiel : Atmosphäre, Ozeane, Kontinente. Annalen der Meteorologie, 26 . Deutscher Wetterdienst, Offenbach am Main, Germany, pp. 118-119. ISBN 978-3-88148-247-9
    Publication Date: 2018-01-24
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-01-31
    Description: Satellite observations and output from a high-resolution ocean model are used to investigate how the Loop Current in the Gulf of Mexico affects the Gulf Stream transport through the Florida Straits. We find that the expansion (contraction) of the Loop Current leads to lower (higher) transports through the Straits of Florida. The associated surface velocity anomalies are coherent from the southwestern tip of Florida to Cape Hatteras. A simple continuity-based argument can be used to explain the link between the Loop Current and the downstream Gulf Stream transport: as the Loop Current lengthens (shortens) its path in the Gulf of Mexico, the flow out of the Gulf decreases (increases). Anomalies in the surface velocity field are first seen to the southwest of Florida and within 4 weeks propagate through the Florida Straits up to Cape Hatteras and into the Gulf Stream Extension. In both the observations and the model this propagation can be seen as pulses in the surface velocities. We estimate that the Loop Current variability can be linked to a variability of several Sverdrups (1Sv = 10(6) m(3) s(-1)) through the Florida Straits. The exact timing of the Loop Current variability is largely unpredictable beyond a few weeks and its variability is therefore likely a major contributor to the chaotic/intrinsic variability of the Gulf Stream. However, the time lag between the Loop Current and the flow downstream of the Gulf of Mexico means that if a lengthening/shortening of the Loop Current is observed this introduces some predictability in the downstream flow for a few weeks.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-02-25
    Description: Oceanic eddies are an important component in preconditioning the central Labrador Sea (LS) for deep convection and in restratifying the convected water. This study investigates the different sources and impacts of Eddy Kinetic Energy (EKE) and its temporal variability in the LS with the help of a 52-year long hindcast simulation of a 1/20° ocean model. Irminger Rings (IR) are generated in the West Greenland Current (WGC) between 60 and 62°N, mainly affect preconditioning and limit the northward extent of the convection area. The IR exhibit a seasonal cycle and decadal variations linked to the WGC strength, varying with the circulation of the subpolar gyre. The mean and temporal variations of IR generation can be attributed to changes in deep ocean baroclinic and upper ocean barotropic instabilities at comparable magnitudes. The main source of EKE and restratification in the central LS are Convective Eddies (CE). They are generated by baroclinic instabilities near the bottom of the mixed layer during and after convection. The CE have a mid-depth core and reflect the hydrographic properties of the convected water mass with a distinct minimum in potential vorticity. Their seasonal to decadal variability is tightly connected to the local atmospheric forcing and the associated air-sea heat fluxes. A third class of eddies in the LS are the Boundary Current Eddies shed from the Labrador Current (LC). Since they are mostly confined to the vicinity of the LC, these eddies appear to exert only minor influence on preconditioning and restratification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-04-05
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 . pp. 361-381.
    Publication Date: 2020-08-04
    Description: A primitive equation model of an idealized ocean basin, driven by simple, study wind and buoyancy forcing at the surface, is used to study the dynamics of mesoscale eddies. Model statistics of a six-year integration using a fine grid (1/6° × 0.2°), with reduced coefficients of horizontal friction, are compared to those using a coarser grid (1/3° × 0.4°), but otherwise identical configuration. Eddy generation in both model cases is primarily due to the release of mean potential energy by baroclinic instability. Horizontal Reynolds stresses become significant near the midlatitude jet of the fine-grid case, with a tendency for preferred energy transfers from the eddies to the mean flow. Using the finer resolution, eddy kinetic energy nearly doubles at the surface of the subtropical gyre, and increases by factors of 3–4 over the jet region and in higher latitudes. The spatial characteristics of the mesoscale fluctuations are examined by calculating zonal wavenumber spectra and velocity autocorrelation functions. With the higher resolution, the dominant eddy scale remains approximately the same in the subtropical gyre but decreases by a factor of 2 in the subpolar areas. The wavenumber spectra indicate a strong influence of the model friction in the coarse-grid case, especially in higher latitudes. Using the coarse grid, there is almost no separation between the energetic eddy scale and the scale where friction begins to dominate, leading to steep spectra beyond the cutoff wavenumber. Using the finer resolution an inertial subrange with a k−3 power law begins to emerge in all model regions outside the equatorial belt. Despite the large increase of eddy intensity in the fine-grid model, effects on the mean northward transport of heat are negligible. Strong eddy fluxes of heat across the midlatitude jet are almost exactly compensated by changes of the heat transport due to the mean flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-08-04
    Description: This study focuses on an important aspect of air–sea interaction in models, namely, large-scale, spurious heat fluxes due to false pathways of the Gulf Stream and North Atlantic Current (NAC) in the “storm formation region” south and east of Newfoundland. Although high-resolution eddy-resolving models show some improvement in this respect, results are sensitive to poorly understood, subgrid-scale processes for which there is currently no complete, physically based parameterization. A simple method to correct an ocean general circulation model (OGCM), acting as a practical substitute for a physically based parameterization, is explored: the recently proposed “semiprognostic method,” a technique for adiabatically adjusting flow properties of a hydrostatic OGCM. The authors show that application of the method to an eddy-permitting model of the North Atlantic Ocean yields more realistic flow patterns and watermass characteristics in the Gulf Stream and NAC regions; in particular, spurious surface heat fluxes are reduced. Four simple modifications to the method are proposed, and their benefits are demonstrated. The modifications successfully account for three drawbacks of the original method: reduced geostrophic wave speeds, damped mesoscale eddy activity, and spurious interaction with topography. It is argued that use of a corrected (eddy permitting) OGCM in a coupled modeling system for simulating present climate (as now becomes possible because of increasing computer power) should lead to a more realistic simulation in regions of strong air–sea interaction as compared with that obtained with an uncorrected model. The method is also well suited for the simulation of the uptake and transport of passive tracers, such as anthropogenic carbon dioxide or components of ecosystem models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-08-04
    Description: Many models of the large-scale thermohaline circulation in the ocean exhibit strong zonally integrated upwelling in the midlatitude North Atlantic that significantly decreases the amount of deep water that is carried from the formation regions in the subpolar North Atlantic toward low latitudes and across the equator. In an analysis of results from the Community Modeling Effort using a suite of models with different horizontal resolution, wind and thermohaline forcing, and mixing parameters, it is shown that the upwelling is always concentrated in the western boundary layer between roughly 30° and 40°N. The vertical transport across 1000 m appears to be controlled by local dynamics and strongly depends on the horizontal resolution and mixing parameters of the model. It is suggested that in models with a realistic deep-water formation rate in the subpolar North Atlantic, the excessive upwelling can be considered as the prime reason for the typically too low meridional overturning rates and northward heat transports in the subtropical North Atlantic. A new isopycnal advection and mixing parameterization of tracer transports by mesoscale eddies yield substantial improvements in these integral measures of the circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26 . pp. 1142-1164.
    Publication Date: 2020-08-04
    Description: The authors use different versions of the model of the wind- and thermohaline-driven circulation in the North and Equatorial Atlantic developed under the WOCE Community Modeling Effort to investigate the mean flow pattern and deep-water formation in the subpolar region, and the corresponding structure of the basin-scale meridional overturning circulation transport. A suite of model experiments has been carded out in recent years, differing in horizontal resolution (1° × 1.2°, 1/3° × 0.4°, 1/6° × 0.2°), thermohaline boundary conditions, and parameterization of small-scale mixing. The mass transport in the subpolar gyre and the production of North Atlantic Deep Water (NADW) appears to be essentially controlled by the outflow of dense water from the Greenland and Norwegian Seas. in the present model simulated by restoring conditions in a buffer zone adjacent to the boundary near the Greenland–Scotland Ridge. Deep winter convection homogenizes the water column in the center of the Labrador Sea to about 2000 m. The water mass properties (potential temperature about 3°C, salinity about 34.9 psu) and the volume (1.1×1053 km3) of the homogenized water are in fair agreement with observations. The convective mixing has only little effect on the net sinking of upper-layer water in the subpolar gyre. Sensitivity experiments show that the export of NADW from the subpolar North Atlantic is more strongly affected by changes in the overflow conditions than by changes in the surface buoyancy fluxes over the Labrador and Irminger Seas, even if these suppress the deep convection completely. The host of sensitivity experiments demonstrates that realistic meridional overturning and heat transport distributions for the North Atlantic (with a maximum of 1 PW) can be obtained with NADW production rates of 15–16 Sv, provided the spurious upwelling of deep water that characterizes many model solutions in the Gulf Stream regime is avoided by adequate horizontal resolution add mixing parameterization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...