GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (1)
  • American Meteorological Society  (1)
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 41 (11). pp. 2242-2258.
    Publication Date: 2018-04-12
    Description: Simple idealized layered models and primitive equation models show that the meridional gradient of the zonally averaged pressure has no direct relation with the meridional flow. This demonstrates a contradiction in an often-used parameterization in zonally averaged models. The failure of this parameterization reflects the inconsistency between the model of Stommel and Arons and the box model of Stommel, as previously pointed out by Straub. A new closure is proposed. The ocean is divided in two dynamically different regimes: a narrow western boundary layer and an interior ocean; zonally averaged quantities over these regions are considered. In the averaged equations three unknowns appear: the interior zonal pressure difference Delta p(i), the zonal pressure difference Delta p(b) of the boundary layer, and the zonal velocity us at the interface between the two regions. Here Delta p(i) is parameterized using a frictionless vorticity balance, Delta p(b), by the difference of the mean pressure in the interior and western boundary, and u(delta) by the mean zonal velocity of the western boundary layer. Zonally resolved models, a layer model, and a primitive equation model validate the new parameterization by comparing with the respective zonally averaged counterparts. It turns out that the zonally averaged models reproduce well the buoyancy distribution and the meridional flow in the zonally resolved model versions with respect to the mean and time changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Physical Oceanography, American Meteorological Society, 44(8), pp. 2093-2106, ISSN: 0022-3670
    Publication Date: 2019-07-16
    Description: The recently proposed Internal Wave Dissipation, Energy and Mixing (IDEMIX) model, describing the propagation and dissipation of internal gravity waves in the ocean, is extended. Compartments describing the energy contained in the internal tides and the near-inertial waves at low, vertical wavenumber are added to a compartment of the wave continuum at higher wavenumbers. Conservation equations for each compartment are derived based on integrated versions of the radiative transfer equation of weakly interacting waves. The compartments interact with each other by the scattering of tidal energy to the wave continuum by triad wave– wave interactions, which are strongly enhanced equatorward of 288 due to parametric subharmonic instability of the tide and by scattering to the continuum of both tidal and near-inertial wave energy over rough topography and at continental margins. Global numerical simulations of the resulting model using observed stratification, forcing functions, and bottom topography yield good agreement with available observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...