GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMER SOC LIMNOLOGY OCEANOGRAPHY  (2)
  • European Commission  (2)
  • PERGAMON-ELSEVIER SCIENCE LTD  (2)
  • 1
    Publication Date: 2020-06-22
    Description: This report presents a review of the research knowledge and gaps on fish populations, fisheries and linked ecosystems in the Central Arctic Ocean (CAO). The CAO comprises the deep basins of the Arctic Ocean beyond the shelf break, which largely overlap with the High Seas of the Arctic Ocean, i.e. the marine areas outside the Exclusive Economic Zones (EEZs) of the Arctic coastal nations. The authors of the report are members of the European Fisheries Inventory in the Central Arctic Ocean (EFICA) Consortium. This study was funded by the European Commission as an EU contribution to the international cooperation within the Agreement to Prevent Unregulated High Seas Fisheries in the Central Arctic Ocean. The report contains desk-based research, using scientific research data bases as well as any available research performed by the EFICA Consortium partners and EU institutions or others. In Chapters 2-8 the authors review the literature and identify specific knowledge gaps. The gap analyses involve comparisons of actual knowledge with desired knowledge on the fish stocks of the CAO to be able to evaluate possibilities for future sustainable fisheries in the area. Chapter 1 is an introductory chapter, and Chapter 9 presents a holistic gap analysis based on Chapters 2-8 and recommendations for research priorities and the next steps. The critical gap analysis highlights that the knowledge gaps for the CAO are enormous and obstruct any quantitative analyses of its fish stocks. This agrees with the conclusions from the Fifth FiSCAO Report (FiSCAO 2018). While data for the physical environment in the CAO (oceanography, bottom topography and ice-cover dynamics) would be sufficient for fish stock modelling and assessment, there is a massive lack of biological and ecological data. The CAO is not a closed system and some aspects of the shelf seas are of high relevance for the CAO, notably connectivity of fish stocks and fish species moving north with climate warming. Scientific research and monitoring programs are established in the shelf seas, and new data are constantly being produced. Fish stock data are available from scientific projects and monitoring programs for some of the shelf seas (Barents Sea, Bering Sea, and to a lesser extent for the Beaufort Sea and the Chukchi Sea). Data exist also for the Russian shelf seas (Kara Sea, Laptev Sea, East Siberian Sea), but these data are not internationally available, while for the areas north of Canada/Greenland data are missing; they do not exist because of the severe ice conditions there. More data from all shelf seas may be hidden in reports that are not publicly accessible. We recommend to make current knowledge generally available by translating key publications and identification of valuable data reports. Research priorities comprise the collection and analysis of primary data in the CAO, and – to a limited extent – from adjacent waters through collaborations with other Signatories of the Agreement (e.g. on population genetics). Further research priorities include an evaluation of ecosystem vulnerability, social-ecological analyses, i.e. recognizing the close and often complex interactions between humans and nature, and recommendations for governance of the CAO. Fulfilling the 14 specific research priorities mentioned in Chapter 9 to “sufficient knowledge available” could enable the potential, future application of an Ecosystem Approach to Management for the CAO.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev , info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-10
    Description: Here we present a new, pan-Atlantic compilation and analysis of data on Calanus finmarchicus abundance, demography, dormancy, egg production and mortality in relation to basin-scale patterns of temperature, phytoplankton biomass, circulation and other environmental characteristics in the context of understanding factors determining the distribution and abundance of C. finmarchicus across its North Atlantic habitat. A number of themes emerge: (1) the south-to-north transport of plankton in the northeast Atlantic contrasts with north-to-south transport in the western North Atlantic, which has implications for understanding population responses of C. finmarchicus to climate forcing, (2) recruitment to the youngest copepodite stages occurs during or just after the phytoplankton bloom in the east whereas it occurs after the bloom at many western sites, with up to 3.5 months difference in recruitment timing, (3) the deep basin and gyre of the southern Norwegian Sea is the centre of production and overwintering of C. finmarchicus, upon which the surrounding waters depend, whereas, in the Labrador/Irminger Seas production mainly occurs along the margins, such that the deep basins serve as collection areas and refugia for the overwintering populations, rather than as centres of production, (4) the western North Atlantic marginal seas have an important role in sustaining high C. finmarchicus abundance on the nearby coastal shelves, (5) differences in mean temperature and chlorophyll concentration between the western and eastern North Atlantic are reflected in regional differences in female body size and egg production, (6) regional differences in functional responses of egg production rate may reflect genetic differences between western and eastern populations, (7) dormancy duration is generally shorter in the deep waters adjacent to the lower latitude western North Atlantic shelves than in the east, (8) there are differences in stage-specific daily mortality rates between eastern and western shelves and basins, but the survival trajectories for cohort development from CI to CV are similar, and (9) early life stage survival is much lower in regions where C. finmarchicus is found with its congeners, C. glacialis and/or C. hyperboreus. This compilation and analysis provides new knowledge for evaluation and parameterisation of population models of C. finmarchicus and their responses to climate change in the North Atlantic. The strengths and weaknesses of modeling approaches, including a statistical approach based on ecological niche theory and a dynamical approach based on knowledge of spatial population dynamics and life history, are discussed, as well as needs for further research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Marine Pollution Bulletin, PERGAMON-ELSEVIER SCIENCE LTD, ISSN: 0025-326X
    Publication Date: 2019-07-17
    Description: The sensitivity of copepods to ocean acidification (OA) and warming may increase with time, however, studies 〉10 days and on synergistic effects are rare. We therefore incubated late copepodites and females of two dominant Arctic species, Calanus glacialis and C. hyperboreus, at 0 °C at 390 and 3000 µatm pCO2 for several months in fall/winter 2010. Respiration rates, body mass and mortality in both species and life stages did not change with pCO2. To detect synergistic effects, in 2011 C. hyperboreus females were kept at different pCO2 and temperatures (0, 5, 10 °C). Incubation at 10 °C induced sublethal stress, which might have overruled effects of pCO2. At 5 °C and 3000 µatm, body carbon was significantly lowest indicating a synergistic effect. The copepods, thus, can tolerate pCO2 predicted for a future ocean, but in combination with increasing temperatures they could be sensitive to OA.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMER SOC LIMNOLOGY OCEANOGRAPHY
    In:  EPIC3Limnology and Oceanography, AMER SOC LIMNOLOGY OCEANOGRAPHY, ISSN: 0024-3590
    Publication Date: 2015-10-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-22
    Description: As a result of global warming, the marine ecosystem around the North Pole, the Central Arctic Ocean (CAO), is in fast transition from a permanently to a seasonally ice-covered ocean. The sea-ice loss will enable summer access to the CAO for non-icebreaking ships, including fishery vessels, in the near future. However, the lack of knowledge on the CAO ecosystem impedes any assessment of the sustainability of potential future fisheries in the CAO. Taking a precautionary approach, nine countries and the EU established in 2021 the Agreement to Prevent Unregulated High Seas Fisheries in the Central Arctic Ocean, which a.o. includes mapping and monitoring of the CAO ecosystem before any commercial fishery is initiated. To reduce the existing lack of knowledge, the EFICA Consortium participated, together with ca. 250 on-board scientists, in sampling and data collection of ecosystem data during four legs of the international MOSAiC expedition in 2019-2020. This report describes the field work performed by the EFICA scientists using water-column acoustics, deep-sea video recording, and fish and eDNA sampling for targeting zooplankton and fish. Further ecosystem data (physical, chemical and biological) were collected by the EFICA scientists in collaboration with other scientists on-board. Together with this report, a metadata database containing lists of all collected samples and data that are relevant for future fishery assessment studies was delivered to the European Commission.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , notRev , info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-08-15
    Description: Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...