GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMER SOC LIMNOLOGY OCEANOGRAPHY  (1)
  • American Geophysical Union  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2014-09-03
    Description: From November 2006 to January 2010, a sediment trap that was cleared monthly was deployed in Lake Challa, a deep stratified freshwater lake on the eastern slope of Mt. Kilimanjaro in southern Kenya. Geochemical data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to characterize the effect of single parameters on productivity and sedimentation processes in the crater basin. During the southern hemisphere summer (November–March), when the water temperature is high and the lake is biologically productive (nondiatom algae), calcite predominated in the sediment trap samples. During the “long rain” season (March–May) a small amount of organic matter and lithogenic material caused by rainfall appeared. This was followed by the cool and windy months of the southern hemisphere winter (June–October) when diatoms were the main component, indicating a diatom bloom initiated by improvement of nutrient availability related to upwelling processes. The sediment trap data support the hypothesis that the light–dark lamination couplets, which are abundant in Lake Challa cores, reflect seasonal delivery to the sediments of diatom-rich particulates during the windy months and diatom-poor material during the wet season. However, interannual and spatial variability in upwelling and productivity patterns, as well as El Niño–Southern Oscillation (ENSO)-related rainfall and drought cycles, exert a strong influence on the magnitude and geochemical composition of particle export to the hypolimnion of Lake Challa.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA1215, doi:10.1029/2005PA001205.
    Description: In a piston core from the central Bering Sea, diatom microfossil-bound N isotopes and the concentrations of opal, biogenic barium, calcium carbonate, and organic N are measured over the last glacial/interglacial cycle. Compared to the interglacial sections of the core, the sediments of the last ice age are characterized by 3‰ higher diatom-bound δ 15N, 70 wt % lower opal content and 1200 ppm lower biogenic barium. Taken together and with constraints on sediment accumulation rate, these results suggest a reduced supply of nitrate to the surface due to stronger stratification of the upper water column of the Bering Sea during glacial times, with more complete nitrate consumption resulting from continued iron supply through atmospheric deposition. This finding extends the body of evidence for a pervasive link between cold climates and polar ocean stratification. In addition, we hypothesize that more complete nutrient consumption in the glacial age subarctic Pacific contributed to the previously observed ice age reduction in suboxia and denitrification in the eastern tropical North Pacific by lowering the nutrient content of the intermediate-depth water formed in the subpolar North Pacific. In the deglacial interval of the Bering Sea record, two apparent peaks in export productivity are associated with maxima in diatom-bound and bulk sediment δ 15N. The high δ 15N in these intervals may have resulted from greater surface nutrient consumption during this period. However, the synchroneity of the deglacial peaks in the Bering Sea with similar bulk sediment δ 15N changes in the eastern Pacific margin and the presence of sediment lamination within the Bering Sea during the deposition of the productivity peaks raise the possibility that both regional and local denitrification worked to raise the δ 15N of the nitrate feeding Bering Sea surface waters at these times.
    Description: Financial support for this work was provided by NSF grants OCE-0136449, OCE-9981479, ANT-0453680, by BP and Ford Motor Company through the Princeton Carbon Migration Initiative, and by a NDSEG fellowship to B.G.B. Work conducted aboard the USCG Healy (Healy 0202) was funded by grant OPP-9912122.
    Keywords: Nitrogen isotopes ; Subarctic North Pacific ; Polar stratification hypothesis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...