GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (3)
Document type
Publisher
Years
  • 1
    Publication Date: 2015-04-15
    Description: Microstructure and hydrographic observations, during September 2007 in the boundary current on the East Siberian continental slope, document upper ocean stratification and along-stream water mass changes. A thin warm surface layer overrides a shallow halocline characterized by a ∼40-m thick temperature minimum layer beginning at ∼30 m depth. Below the halocline, well-defined thermohaline diffusive staircases extended downwards to warm Atlantic Water intrusions found at 200–800 m depth. Observed turbulent eddy kinetic energy dissipations are extremely low (ε 〈 10−6 W m−3), such that double diffusive convection dominates the vertical mixing in the upper-ocean. The diffusive convection heat fluxes FHdc ∼1 W m−2, are an order of magnitude too small to account for the observed along-stream cooling of the boundary current. Our results implicate circulation patterns and the influence of shelf waters in the evolution of the boundary current waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 124 (12). pp. 9404-9416.
    Publication Date: 2022-01-31
    Description: We investigate the origin of fresh water on the shelves near Cape Farewell (south Greenland) using sections of three hydrographic cruises in May (HUD2014007) and June 2014 (JR302 and Geovide). We partition the fresh water between meteoric water sources and sea ice melt or brine formation using the δ18O of sea water. The sections illustrate the presence of the East Greenland Coastal Current (EGCC) close to shore east of Cape Farewell. West of Cape Farewell, it partially joins the shelf break, with a weaker near‐surface remnant of the EGCC observed on the shelf southwest and west of Cape Farewell. The EGCC traps the freshest waters close to Greenland and carries a brine signature below 50‐m depth. The cruises illustrate a strong increase in meteoric water of the shelf upper layer (by more than a factor 2) between early May and late June, likely to result from East and South Greenland spring melt. There was also a contribution of sea ice melt near the surface but with large variability both spatially and also between the two June cruises. Furthermore, gradients in the freshwater distribution and its contributions are larger east of Cape Farewell than west of Cape Farewell, which is related to the EGCC being more intense and closer to the coast east of Cape Farewell than west of it. Large temporal variability in the currents is found between different sections to the east and southeast of Cape Farewell, likely related to changes in wind conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...